matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSup und Inf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Sup und Inf
Sup und Inf < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sup und Inf: Wie aufschreiben?
Status: (Frage) beantwortet Status 
Datum: 21:59 Mo 01.12.2008
Autor: carlosfritz

Aufgabe
Bestimme zu A := [mm] \{-1^{m}- \bruch{1}{3n}; m,n \in N \} [/mm] sup A und inf A, falls vorhanden. Ich denke mal standartmäßig [mm] A\in [/mm] R [mm] \subsetR [/mm]

Ich bin mir überhaupt nicht sicher,aber:

maxA=1 (bei m=gerade und n=unendlich)
minA=-3/4 (bei m=ungerade und n=1)

ist nun maxA=supA? Weil es wird ja getroffen wenn [mm] \limes_{n\rightarrow\infty} [/mm]
dann ist doch auch minA=inf A?

Ich weiss nicht, bin mir nicht sicher, ich denke ich mache da irgendwie einen Definitionsfehler, aber ich werde aus meinen Skript nicht schlau...


Viel schlimmer noch, wie schreibe ich das ganze vernünftig auf?



Ich würde es in etwa so machen zu mindest beginnen:

Beschränktheit:
A ist nach oben beschränkt, da maxA=1 und 1<2 , [mm] 2\in [/mm] R
A ist nach unten beschränkt, da minA= -3/4 und -3/4> -1, [mm] -1\in [/mm] R

Das Minimum der Menge der oberen Schranken ist ja nun gerade "1" (oder muss es [mm] \not\in [/mm] A , also größer als 1 sein?)

        
Bezug
Sup und Inf: Definitionen beachten
Status: (Antwort) fertig Status 
Datum: 06:06 Di 02.12.2008
Autor: Loddar

Hallo carlosfritz!


Hast Du Dir mal die "ersten" Glieder dieser Zahlenmenge aufgeschrieben?

Wie kommst Du da z.B. auf einen Wert von [mm] $-\bruch{3}{4}$ [/mm] ?
Für $n \ = \ m \ = \ 1$ erhalte ich:
[mm] $$(-1)^1-\bruch{1}{3*1} [/mm] \ = \ [mm] -1-\bruch{1}{3} [/mm] \ = \ [mm] -\bruch{4}{3}$$ [/mm]
Dies ist das Minimum dieser Zahlenmenge.

Wenn ein Minimum existiert, ist das auch automatisch das Infinum der Menge.

Gibt es denn einne größten Wert dieser Zahlenmenge? Aber es gibt einen oberen Wert, der nicht überschritten (bzw. auch hier nicht erreicht) wird.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]