matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSummenzeichen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Summenzeichen
Summenzeichen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenzeichen: Umnummerierung
Status: (Frage) beantwortet Status 
Datum: 10:46 Sa 16.09.2006
Autor: clwoe

Aufgabe
Es ist:

[mm] \summe_{i=0}^{n}a^{i+1}-\summe_{i=0}^{n}a^{i} [/mm]
[mm] =\summe_{i=1}^{n+1}a^{i}-\summe_{i=0}^{n}a^{i} [/mm]
[mm] =a^{n+1}-a^{0}=a^{n+1}-1 [/mm]

Hallo,

ich habe mal eine Frage zu obigen Summen. Ich habe diese Subtraktion der Summen mal mit Zahlen von i=1 bis 4 durchgespielt und ich sehe natürlich, das genau das herauskommt was in der letzten Zeile steht, also weil sich ja sozusagen alle Faktoren heraussubtrahieren, bis eben auf den letzten Faktor [mm] a^{n+1} [/mm] und die 1. Aber wie komme ich darauf das ich das alles so hinschreiben kann wie oben gezeigt ohne das ich es mit Beispielzahlen ausprobiere. Die erste Summe wird ja sozusagen umnummeriert und wird dann sozusagen nicht mehr [mm] a^{i+1} [/mm] sondern nur noch [mm] a^{i}. [/mm] Aber wie kriege ich raus wie ich den Summationsterm ändern muss wenn ich die Summe entsprechend umnummerieren will, oder auch andersherum, wie sehe ich wenn ich den Summationsterm ändern will um beispielsweise etwas auszuklammern wie ich die dazugehörige Summe umzunummerieren habe??? Ich sehe hier irgendwie keinen Zusammenhang. Vielleicht ist es ja ganz einfach ich seh es nur noch nicht.

Kann mir jemand dabei helfen?

Gruß,
clwoe


        
Bezug
Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Sa 16.09.2006
Autor: Event_Horizon

Eigentlich ists einfach, allerdings braucht's ein wenig Übung, damit man das sieht und sich nicht vertut.


In diesem Fall gehts darum, den Index von beiden a's so umzusetzen, daß beide den gleichen Index haben. Jetzt kannst du beide Summen voneinander abziehen. Allerdings natürlich nur die Summanden, die in beiden vorkommen, also auch nur die Indizes, die in beiden Summen stehen.

Die linke Summe fängt bei i=1 an, die rechte bei i=0. Das heißt, von der rechten Summe bleibt hier der Index i=0 übrig, alle höheren lassen sich mit der linken Summe verrechnen.

Bis natürlich auf den letzten Index. Links hast du i=n+1, rechts nur i=n. DAs heißt auch hier, daß links der n+1-Index übrig bleibt.

Also, man kann das ganze noch so umschreiben:


[mm] $\left( a_{n+1}+\summe_{i=1}^{n}a^{i}\right)-\left( a_0+\summe_{i=1}^{n}a^{i}\right)$ [/mm]

Hier haben beide Summen wieder die gleichen Indizes, und heben sich weg.

Wie gesagt, der Trick bei sowas ist meistens, den Indexbereich so umzuschreiben, daß die einzelnen Summanden den gleichen Index haben.

Bezug
                
Bezug
Summenzeichen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:20 Sa 16.09.2006
Autor: clwoe

Hallo,

warum schreibe ich die Summen überhaupt um, sie sind doch beide schon gleich. Beide gehen von 0 bis n. Und was ich überhaupt nicht verstanden habe ist das, warum die linke Summe von n auf n+1 abgeändert wird. Warum wird dann der Summationsterm nicht auch entsprechend abgeändert???

Könnte mir das mal anhand einer Rechnung genau zeigen. Ich steige einfach nicht durch.

Gruß,
clwoe


Bezug
                        
Bezug
Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Sa 16.09.2006
Autor: Gonozal_IX

Hiho,

die beiden Summen sind eben nicht gleich, denn sie haben unterschiedliche Summanden.... die eine hat [mm] a^{i+1} [/mm] und die andere [mm] a^i. [/mm]

Sicherlich müsstest du keine Indexverschiebung machen, sondern könntest die Summen direkt zusammenziehen, das würde dann wie folgt aussehen:

[mm] \summe_{i=0}^{n}a^{i+1} - \summe_{i=0}^{n}a^i = - (\summe_{i=0}^{n}a^i - \summe_{i=0}^{n}a^{i+1}) = - \summe_{i=0}^{n}(a^i - a^{i+1})[/mm]

[mm] = - [ (a^0 - a^1) + (a^1 - a^2) + ... + (a^n - a^{n+1})] = - [1 - a^{n+1}] = a^{n+1} - 1 [/mm]

Dies nennt man Teleskopsumme, weil das letzte Glied des ersten Summanden sich gerade mit dem ersten Glied des zweiten Summanden aufhebt usw.


Ein weiterer Weg wäre die Indexverschiebung, wie von Event Horizon vorgeschlagen. Durch die Indexverschiebung erreicht man, daß sowohl bei der ersten Summe, als auch bei der zweiten Summe jeweils [mm] a^i [/mm] vorkommt, da man dann leicht beides voneinander subtrahieren kann.

Als Beispiel mal deine Aufgabe:

[mm]\summe_{i=0}^{n}a^{i+1} - \summe_{i=0}^{n}a^i [/mm]

Nun wollen wir erreichen, daß bei der ersten Summe anstatt [mm] a^{i+1} [/mm] ebenfalls [mm] a^i [/mm] steht, dazu gucken wir sie uns genauer an:

[mm]\summe_{i=0}^{n}a^{i+1} = a^{0+1} + a^{1+1} + ... + a^{n+1} = a^{1} + a^{2} + ... + a^{n+1} = \summe_{i=1}^{n+1}a^i[/mm]

Ich hoffe, das ist einigermaßen ersichtlich. Allgemein gilt:

Obere und untere Grenze müssen um den gleichen Wert nach "oben" (unten) korrigiert werden, dann müssen die Summanden aber nach "unten" (oben) angepasst werden.

Also könnte man auch schreiben:
[mm]\summe_{i=0}^{n}a^{i+1} = \summe_{i=0+17}^{n+17}a^{i+1-17} = \summe_{i=17}^{n+17}a^{i-16} [/mm]

Ich hoffe, die Indexverschiebung ist nu klar ;-)

Nun weiter zu deiner Aufgabe, wir hatten ja:

[mm]\summe_{i=0}^{n}a^{i+1} - \summe_{i=0}^{n}a^i = \summe_{i=1}^{n+1}a^{i} - \summe_{i=0}^{n}a^i [/mm]

Nun sind beide Summen identisch, bis auf den Anfangs- und Endindex.
Also bleibt von der ersten Summe nur der [mm]n+1[/mm]-te Summand stehen (alle anderen werden ja abgezogen) und bei der zweiten Summe bleibt nur [mm] a^0 [/mm] stehen, also gilt:

[mm]\summe_{i=1}^{n+1}a^{i} - \summe_{i=0}^{n}a^i = a^{n+1} - a^0 = a^{n+1} - 1[/mm]

Gruß,
Gono.





Bezug
                        
Bezug
Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Sa 16.09.2006
Autor: Gonozal_IX

Hiho,

die beiden Summen sind eben nicht gleich, denn sie haben unterschiedliche Summanden.... die eine hat [mm] a^{i+1} [/mm] und die andere [mm] a^i. [/mm]

Sicherlich müsstest du keine Indexverschiebung machen, sondern könntest die Summen direkt zusammenziehen, das würde dann wie folgt aussehen:

[mm] \summe_{i=0}^{n}a^{i+1} - \summe_{i=0}^{n}a^i = - (\summe_{i=0}^{n}a^i - \summe_{i=0}^{n}a^{i+1}) = - \summe_{i=0}^{n}(a^i - a^{i+1})[/mm]

[mm] = - [ (a^0 - a^1) + (a^1 - a^2) + ... + (a^n - a^{n+1})] = - [1 - a^{n+1}] = a^{n+1} - 1 [/mm]

Dies nennt man Teleskopsumme, weil das letzte Glied des ersten Summanden sich gerade mit dem ersten Glied des zweiten Summanden aufhebt usw.


Ein weiterer Weg wäre die Indexverschiebung, wie von Event Horizon vorgeschlagen. Durch die Indexverschiebung erreicht man, daß sowohl bei der ersten Summe, als auch bei der zweiten Summe jeweils [mm] a^i [/mm] vorkommt, da man dann leicht beides voneinander subtrahieren kann.

Als Beispiel mal deine Aufgabe:

[mm]\summe_{i=0}^{n}a^{i+1} - \summe_{i=0}^{n}a^i [/mm]

Nun wollen wir erreichen, daß bei der ersten Summe anstatt [mm] a^{i+1} [/mm] ebenfalls [mm] a^i [/mm] steht, dazu gucken wir sie uns genauer an:

[mm]\summe_{i=0}^{n}a^{i+1} = a^{0+1} + a^{1+1} + ... + a^{n+1} = a^{1} + a^{2} + ... + a^{n+1} = \summe_{i=1}^{n+1}a^i[/mm]

Ich hoffe, das ist einigermaßen ersichtlich. Allgemein gilt:

Obere und untere Grenze müssen um den gleichen Wert nach "oben" (unten) korrigiert werden, dann müssen die Summanden aber nach "unten" (oben) angepasst werden.

Also könnte man auch schreiben:
[mm]\summe_{i=0}^{n}a^{i+1} = \summe_{i=0+17}^{n+17}a^{i+1-17} = \summe_{i=17}^{n+17}a^{i-16} [/mm]

Ich hoffe, die Indexverschiebung ist nu klar ;-)

Nun weiter zu deiner Aufgabe, wir hatten ja:

[mm]\summe_{i=0}^{n}a^{i+1} - \summe_{i=0}^{n}a^i = \summe_{i=1}^{n+1}a^{i} - \summe_{i=0}^{n}a^i [/mm]

Nun sind beide Summen identisch, bis auf den Anfangs- und Endindex.
Also bleibt von der ersten Summe nur der [mm]n+1[/mm]-te Summand stehen (alle anderen werden ja abgezogen) und bei der zweiten Summe bleibt nur [mm] a^0 [/mm] stehen, also gilt:

[mm]\summe_{i=1}^{n+1}a^{i} - \summe_{i=0}^{n}a^i = a^{n+1} - a^0 = a^{n+1} - 1[/mm]

Gruß.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]