matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSummenwert gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Summenwert gesucht
Summenwert gesucht < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenwert gesucht: Frage
Status: (Frage) beantwortet Status 
Datum: 12:52 Sa 19.03.2005
Autor: chris2000

Hallo,

"Bestimmen Sie den Wert der folgenden Summe:"

[mm] \summe_{k=2}^{22} \left( 2k + \left( \summe_{j=0}^{k} 2^{j} \right) \right)[/mm]

Also
[mm]\summe_{j=0}^{k} 2^{j} = \bruch{1-2^k}{1-2}[/mm] und
[mm]2*\summe_{k=0}^{n} k = 2* \left( \bruch{1}{2}*n*(n+1) \right)[/mm]

Wie kann man das jetzt zusammenfassen, geht das überhaupt?

Vielen Dank im Voraus

        
Bezug
Summenwert gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Sa 19.03.2005
Autor: Hanno

Hallo!

> $ [mm] \summe_{j=0}^{k} 2^{j} [/mm] = [mm] \bruch{1-2^k}{1-2} [/mm] $

Das ist nicht richtig. Der Exponent muss $k+1$ sein.

Dennoch: Du hast die Aufgabe doch schon fast gelöst! Ich forme mal ein wenig für dich um:

$ [mm] \summe_{k=2}^{22} \left( 2k + \left( \summe_{j=0}^{k} 2^{j} \right) \right) [/mm] $
[mm] $=\summe_{k=2}^{22} \left( 2k+2^{k+1}-1\right)$ [/mm]
[mm] $=2\left(\left( \summe_{k=1}^{22} k \right) -1\right) +\summe_{k=0}^{22} 2^{k+1}-2^2-2^1-\summe_{k=2}^{22} [/mm] 1$
[mm] $=2\left(\left( \summe_{k=1}^{22} k \right) -1\right) +2\cdot\summe_{k=0}^{22} 2^k-2^2-2^1-\summe_{k=2}^{22} [/mm] 1$

Schaffst du das nun allein?


Liebe Grüße,
Hanno

Bezug
                
Bezug
Summenwert gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 Fr 25.03.2005
Autor: chris2000

Hallo!

>  
> > [mm]\summe_{j=0}^{k} 2^{j} = \bruch{1-2^k}{1-2}[/mm]
>
> Das ist nicht richtig. Der Exponent muss [mm]k+1[/mm] sein.

Oops, ja. Hab ich falsch abgeschrieben. Aber wenn man sowas in einer Klausur nicht weiß, sitzt man ziemlich blöd da.
  

> Schaffst du das nun allein?

Ja, ist klar. Falls du sie zu Ende gerechnet hast: bin auf 2^24 + 475 gekommen.

Danke Dir.

- Christian.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]