matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikSummenformelbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Summenformelbeweis
Summenformelbeweis < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenformelbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:00 Fr 20.04.2007
Autor: Jan85

Aufgabe
Zeigen Sie


[mm] \summe_{k=0}^{n} \vektor{n \\ k} m^k (m+1)^k [/mm]

Hallo,

kann mir jemand helfen?

ielen Dank
Jan

        
Bezug
Summenformelbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 Fr 20.04.2007
Autor: DirkG

Da steht nur ein Term, für den ist nichts zu beweisen. Vielleicht meinst du ja die über den binomischen Satz beweisbare geschlossene Darstellung

[mm] $\summe_{k=0}^{n} \binom{n}{k} m^k(m+1)^k [/mm] = [mm] \summe_{k=0}^{n} \binom{n}{k} (m(m+1))^k\cdot 1^{n-k} [/mm] = [mm] (m(m+1)+1)^n$ [/mm] .

Bezug
                
Bezug
Summenformelbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Fr 20.04.2007
Autor: Jan85

danke für die antwort.
hm ja das habe ich mir auch gedacht. hier steht nur Zeigen Sie: ....


Bezug
        
Bezug
Summenformelbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:55 Fr 20.04.2007
Autor: Jan85

och mann bin ich blöd. Fehler beim abschreiben, sorry
zwischen [mm] m^k [/mm] und [mm] (m+1)^k [/mm]    kommt ein "="
weiß jemand weiter?

Bezug
                
Bezug
Summenformelbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 Fr 20.04.2007
Autor: schachuzipus

Hallo Jan,  

ich denke, du meinst diese Aussage, oder?

$ [mm] \summe_{k=0}^{n} \vektor{n \\ k} m^k =(m+1)^\red{n} [/mm] $ [mm] $\forall n\in\IN$ [/mm]


Das ist nämlich ein Spezialfall des binomischen Lehrsatzes.

Den Beweis kann man über vollst. Induktion führen

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]