matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSummenformel für geom. Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Summenformel für geom. Reihe
Summenformel für geom. Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenformel für geom. Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 So 01.04.2012
Autor: Incubus84

Aufgabe 1
Berechnen Sie die Summen der Reihen unter Verwendung der geometrischen Summenformeln.
d) [mm] \sum_{k=1}^{\infty} \bruch{2 + (-1)^k}{5^k} [/mm]

Aufgabe 2
c) [mm] \sum_{k=1}^{\infty} \left[\bruch{1}{2^k} + \bruch{(-1)^k}{3^k} \right] [/mm]

Hallo zusammen,
mein aktueller Stand: ich weiß, dass die Summenformel wie folgt lautet:
[mm] \bruch [/mm] S = [mm] \bruch{1}{1-q} [/mm]
um sie anwenden zu können muss der Term in der folgenden Form vorliegen:
[mm] a_1 \cdot \sum_{k=1}^{\infty} q^{k-1} [/mm]

Mein (ausführlicher) Weg ist also bis jetzt:
[mm] \begin{matrix} \sum_{k=1}^{\infty} \bruch{2 + (-1)^k}{5^k} \\ = \sum_{k=1}^{\infty} \bruch{2}{5^k} + \sum_{k=1}^{\infty} \bruch{(-1)^k}{5^k} \\ = 2 * \sum_{k=1}^{\infty} \bruch{1}{5^k} + \sum_{k=1}^{\infty} \bruch{(-1)^k}{5^k} \\ = \bruch{2}{5} * \sum_{k=1}^{\infty} \bruch{1}{5^{k-1}} + \sum_{k=1}^{\infty} \bruch{(-1)^k}{5^k} \\ = \bruch{2}{5} * \bruch{1}{1-\bruch{1}{5}} + \sum_{k=1}^{\infty} \bruch{(-1)^k}{5^k} \\ = \bruch{2}{5} * \bruch{1}{1-\bruch{1}{5}} - \bruch{1}{5} \sum_{k=1}^{\infty} (\bruch{1}{5})^{k-1} \\ = \bruch{2}{4} - \bruch{1}{5} * \bruch{1}{1-\bruch{1}{5}} \\ = \bruch{2}{4} - \bruch{1}{5} * \bruch{5}{4} \\ = \bruch{2}{4} - \bruch{1}{4} \\ = \bruch{1}{4} \end{matrix} [/mm]

Als Lösung habe ich [mm] \bruch{1}{3} [/mm] angegeben. Ich wüsste gerne ob ich einen prinzipiellen Fehler bei der Anwendung der Summenformel mach oder mich "nur" irgendwo verrechnet habe. Insbesondere das alternierende Vorzeichen verunsichert mich.

Dank & Gruß

Dennis


---
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Summenformel für geom. Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 So 01.04.2012
Autor: abakus


> Berechnen Sie die Summen der Reihen unter Verwendung der
> geometrischen Summenformeln.
>  d) [mm]\sum_{k=1}^{\infty} \bruch{2 + (-1)^k}{5^k}[/mm]

Hallo,
den Term kannst du zerlegen in [mm] $2*(0,2)^k$ [/mm] und [mm] $(-0,2)^k$ [/mm]
Beachte noch, dass die Summation erst bei k=1 beginnt, also fehlt jeweils der erste Summand ...hoch 0. Man muss also in jeder Summe den fehlenden Summanden 1 subtrahieren.
Die vordere Summe ist 2*(1/(1-0,2)-1)=0,5 und die hintere Summe ist
1/(1-(-0,2))-1=-1/6.
Gruß Abakus

>  c)
> [mm]\sum_{k=1}^{\infty} \left[\bruch{1}{2^k} + \bruch{(-1)^k}{3^k} \right][/mm]
>  
> Hallo zusammen,
>  mein aktueller Stand: ich weiß, dass die Summenformel wie
> folgt lautet:
>  [mm]\bruch[/mm] S = [mm]\bruch{1}{1-q}[/mm]
>  um sie anwenden zu können muss der Term in der folgenden
> Form vorliegen:
>  [mm]a_1 \cdot \sum_{k=1}^{\infty} q^{k-1}[/mm]
>  
> Mein (ausführlicher) Weg ist also bis jetzt:
>  [mm]\begin{matrix} \sum_{k=1}^{\infty} \bruch{2 + (-1)^k}{5^k} \\ = \sum_{k=1}^{\infty} \bruch{2}{5^k} + \sum_{k=1}^{\infty} \bruch{(-1)^k}{5^k} \\ = 2 * \sum_{k=1}^{\infty} \bruch{1}{5^k} + \sum_{k=1}^{\infty} \bruch{(-1)^k}{5^k} \\ = \bruch{2}{5} * \sum_{k=1}^{\infty} \bruch{1}{5^{k-1}} + \sum_{k=1}^{\infty} \bruch{(-1)^k}{5^k} \\ = \bruch{2}{5} * \bruch{1}{1-\bruch{1}{5}} + \sum_{k=1}^{\infty} \bruch{(-1)^k}{5^k} \\ = \bruch{2}{5} * \bruch{1}{1-\bruch{1}{5}} - \bruch{1}{5} \sum_{k=1}^{\infty} (\bruch{1}{5})^{k-1} \\ = \bruch{2}{4} - \bruch{1}{5} * \bruch{1}{1-\bruch{1}{5}} \\ = \bruch{2}{4} - \bruch{1}{5} * \bruch{5}{4} \\ = \bruch{2}{4} - \bruch{1}{4} \\ = \bruch{1}{4} \end{matrix}[/mm]
>  
> Als Lösung habe ich [mm]\bruch{1}{3}[/mm] angegeben. Ich wüsste
> gerne ob ich einen prinzipiellen Fehler bei der Anwendung
> der Summenformel mach oder mich "nur" irgendwo verrechnet
> habe. Insbesondere das alternierende Vorzeichen
> verunsichert mich.
>  
> Dank & Gruß
>  
> Dennis
>  
>
> ---
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Summenformel für geom. Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 Di 03.04.2012
Autor: Incubus84

Vielen Dank für deine Ausführungen. Die Subtraktion von 1 irritiert mich etwas. Ich meine schon ein Gegenbeispiel gesehen zu haben wo dies nicht nötig war. Unglücklicherweise finde ich es gerade nicht!

Bezug
                        
Bezug
Summenformel für geom. Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Di 03.04.2012
Autor: fred97

Für |q|<1 ist

         [mm] \summe_{k=1}^{\infty}q^k= \summe_{k=0}^{\infty}q^k -q^0=\bruch{1}{1-q}-1=\bruch{q}{1-q} [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]