Summenberechnung v. Brüchen < Sonstiges < Schule < Mathe < Vorhilfe
|
Aufgabe | Berechnung der Summe - so kurz wie möglich zusammenfassen
[mm] \bruch{x}{x+1} [/mm] - [mm] \bruch{x}{1-x} [/mm] - [mm] \bruch{1}{x²-1} [/mm] |
Mein Problem ist die korrekte Umformung des zweiten Bruches. Zunächst muss man ja den gemeinsamen Nenner (hier x²-1) kennen. Nun multiplizier ich also den ersten Bruch mit x-1 um im Nenner x²-1 zu erhalten.
Der zweite Bruch würde ich folgendermaßen umformen: - [mm] \bruch{x}{-x+1} [/mm] , dann weiterhin (-1) ausklammern - so erhalte ich ja - [mm] -\bruch{x}{x-1}, [/mm] also ergibt sich ja ein Bruch der zusammengefasst [mm] \bruch{x}{x-1} [/mm] so aussehen würde. Hier müsste ich nun auch wieder mit (x+1) multiplizieren um auf x²-1 zu kommen. Folgendem hab ich bis hierhin also [mm] \bruch{x(x+1) + x(x+1)}{x²-1} [/mm] . Hier muss ich allerdings irgendwo einen Fehler gemacht haben, denn das gesamte Ergebnis soll lauten: [mm] \bruch{2x²-1}{x²-1} [/mm] (bzw. in der gekürzten Form [mm] \bruch{2x²-1}{(x-1)(x+1)}. [/mm] Ich weiß somit, dass ich den zweiten Bruch mit (x+1) multiplizieren müsste, um im Nenner x²-1 zu erhalten, aber das würde laut meiner Lösung ja verkehrt sein, da ich so ja nicht im Zähler auf die geforderte Summe von 2x²-1 kommen würde, denn
x(x+1) + x(x+1) - 1 würde ja 2x²+2x - 1 ergeben. Wenn mir jemand sagen kann, wo beim Umformen des zweiten Bruches meine Gedanken fehlgeleitet sind, wäre ich sehr dankbar.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:33 Mo 31.12.2007 | Autor: | Loddar |
Hallo ShubNiggurath!
> [mm]\bruch{x(x+1) + x(x+1)}{x²-1}[/mm] .
Hier ist Dir ein Vorzeichenfehler unterlaufen, da es heißen muss:
$$... \ = \ [mm] \bruch{x*(x \ \red{-} \ 1)+x*(x+1)}{x^2-1}-\bruch{1}{x^2-1} [/mm] \ = \ ...$$
Gruß
Loddar
|
|
|
|
|
wiedermal dankeschön! der Teufel steckt eben doch im Detail :D
|
|
|
|