matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesSummen/Matrizen/Projektion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Summen/Matrizen/Projektion
Summen/Matrizen/Projektion < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen/Matrizen/Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:41 Sa 25.02.2012
Autor: sissile

Aufgabe
Unter der Annahme n [mm] \not= [/mm] 0 [mm] \in \IK [/mm] zeige
[mm] M_{n \times n} (\IK) [/mm] = W [mm] \oplus [/mm] W'
und gib Formeln für die Projektion auf W längs W' sowie die Projektion W' längs W an.
Menge der suprfreien Matrizen [mm] W:=\{A \in M_{n \times n} (\IK): tr(A)=0\} [/mm]
Vielfache der Einheitsmatrix [mm] W':=\{ \lambda I_n: \lambda \in \IK \} [/mm]


Hallo!!

ZZ: W [mm] \cap [/mm] W' = 0
V  [mm] \in [/mm] W -> tr(V)=0
V [mm] \in [/mm] W' -> W= [mm] \lambda [/mm] * [mm] I_n [/mm]
v [mm] \in [/mm] W [mm] \cap [/mm] W'
=> [mm] tr(\lambda I_n) =\lambda [/mm] * [mm] tr(I_n) [/mm] =0
also muss [mm] \lambda [/mm] =0 sein um =0 zu erreichen.
[mm] \lambda*I_n [/mm] =0  [mm] I_n [/mm] =0


ZZ:
W+W' = [mm] M_{n \times n} (\IK) [/mm]
[mm] \pmat{ 0 & x_{12}&x_{13}&...&x_{1n} \\ x_{21} & 0&x_{23}&...&x_{2n}\\\vdots&\vdots&\ddots&...&\cdots\\x_{n1}&x_{n2}&x_{n3}&...&0 } [/mm] + [mm] \lambda *\pmat{ 1 & 0&0&...&0 \\ 0 & 1&0&...&0\\\vdots&\vdots&\ddots&...&\cdots\\0&0&0&...&1 } [/mm]
Hab ich es mir das zu einfach gemacht? Weil in der Diagonale müsse ja so immer die selbe Zahl vorkommen..

[mm] \pi_1(W)=W [/mm]
[mm] \pi_1(W')=0 [/mm]
V [mm] \in M_{n \times n} (\IK) [/mm]
[mm] \pi_1 (V)=\pi_1(\pmat{ \lambda & x_{12}&x_{13}&...&x_{1n} \\ x_{21} & \lambda&x_{23}&...&x_{2n}\\\vdots&\vdots&\ddots&...&\cdots\\x_{n1}&x_{n2}&x_{n3}&...&\lambda})=\pmat{ 0 & x_{12}&x_{13}&...&x_{1n} \\ x_{21} & 0&x_{23}&...&x_{2n}\\\vdots&\vdots&\ddots&...&\cdots\\x_{n1}&x_{n2}&x_{n3}&...&0 } [/mm]
Was ist die Basis von V? Oder wie komme ich da weiter, wenn ich nicht schon falsch bin.

        
Bezug
Summen/Matrizen/Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:22 Sa 25.02.2012
Autor: angela.h.b.


> Unter der Annahme n [mm]\not=[/mm] 0 [mm]\in \IK[/mm] zeige
>  [mm]M_{n \times n} (\IK)[/mm] = W [mm]\oplus[/mm] W'
>  und gib Formeln für die Projektion auf W längs W' sowie
> die Projektion W' längs W an.
>  Menge der suprfreien Matrizen [mm]W:=\{A \in M_{n \times n} (\IK): tr(A)=0\}[/mm]
>  
> Vielfache der Einheitsmatrix [mm]W':=\{ \lambda I_n: \lambda \in \IK \}[/mm]
>  
> Hallo!!
>  

Hallo!

> ZZ: W [mm]\cap[/mm] W' = 0

Sei [mm] V\in [/mm] W [mm] $\cap$ [/mm] W'.
Dann ist

>  V  [mm]\in[/mm] W -> tr(V)=0

und

>  V [mm]\in[/mm] W' -> W= [mm]\lambda[/mm] * [mm]I_n[/mm]

>  v [mm]\in[/mm] W [mm]\cap[/mm] W'
>  => [mm]tr(\lambda I_n) =\lambda[/mm] * [mm]tr(I_n)[/mm] [mm] =\red{\lambda*n=}0 [/mm]

>  also muss [mm]\lambda[/mm] =0 sein um =0 zu erreichen.
>  [mm]\lambda*I_n[/mm] =0  [mm]I_n[/mm] =0

Nein. Sondern [mm] V=0*I_n=0. [/mm]

>  
>
> ZZ:
>  W+W' = [mm]M_{n \times n} (\IK)[/mm]
>  [mm]\pmat{ 0 & x_{12}&x_{13}&...&x_{1n} \\ x_{21} & 0&x_{23}&...&x_{2n}\\ \vdots&\vdots&\ddots&...&\cdots\\ x_{n1}&x_{n2}&x_{n3}&...&0 }[/mm]
> + [mm]\lambda *\pmat{ 1 & 0&0&...&0 \\ 0 & 1&0&...&0\\ \vdots&\vdots&\ddots&...&\cdots\\ 0&0&0&...&1 }[/mm]
> Hab ich es mir das zu einfach gemacht? Weil in der
> Diagonale müsse ja so immer die selbe Zahl vorkommen..

Ja, genau.
Da solltest Du nochmal genauer nachdenken.
Kannst ja mal überlegen, wie Du [mm] \pmat{1&2&3\\4&5&6\\7&8&9} [/mm] zerlegen würdest.

> [mm]\pi_1(W)=W[/mm]
>  [mm]\pi_1(W')=0[/mm]

Das stimmt zwar, aber noch wichtiger ist

[mm] $\pi_1(w)=w$ [/mm] für alle [mm] w\in [/mm] W
[mm] $\pi_1(w')=0$ [/mm]  für alle [mm] w'\in [/mm] W'

Für den Rest bräuchstest Du erstmal die richtige Zerlegung.

>  V [mm]\in M_{n \times n} (\IK)[/mm]
>  [mm]\pi_1 (V)=\pi_1(\pmat{ \lambda & x_{12}&x_{13}&...&x_{1n} \\ x_{21} & \lambda&x_{23}&...&x_{2n}\\ \vdots&\vdots&\ddots&...&\cdots\\ x_{n1}&x_{n2}&x_{n3}&...&\lambda})=\pmat{ 0 & x_{12}&x_{13}&...&x_{1n} \\ x_{21} & 0&x_{23}&...&x_{2n}\\ \vdots&\vdots&\ddots&...&\cdots\\ x_{n1}&x_{n2}&x_{n3}&...&0 }[/mm]
>  
> Was ist die Basis von V?

??? V ist doch eine Matrix. Matrizen haben keine Basen.
Achso: vielleicht wolltest Du nach der Basis von [mm] M_{n \times n} (\IK) [/mm] fragen. Das sind z.B. die [mm] n^2 [/mm] Matrizen, bei denen ein Eintrag 1 ist und die anderen 0.
Was planst Du? Willst Du die Darstellungsmatrix hinschreiben? Würd' ich nicht machen, sondern lieber die Funktionsgleichung explizit angeben, wie Du es hier oben bereits machst - bloß dann halt richtig. Aber das wird...

LG Angela


> Oder wie komme ich da weiter, wenn
> ich nicht schon falsch bin.


Bezug
                
Bezug
Summen/Matrizen/Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:21 Di 28.02.2012
Autor: sissile


> Hallo!

> > ZZ: W [mm]\cap[/mm] W' = 0

> Sei [mm]V\in[/mm] W [mm]\cap[/mm] W'.
>  Dann ist
>  >  V  [mm]\in[/mm] W -> tr(V)=0

>  und
>  >  V [mm]\in[/mm] W' -> W= [mm]\lambda[/mm] * [mm]I_n[/mm]

>  >  v [mm]\in[/mm] W [mm]\cap[/mm] W'
>  >  => [mm]tr(\lambda I_n) =\lambda[/mm] * [mm]tr(I_n)[/mm]

> [mm]=\red{\lambda*n=}0[/mm]
>  >  also muss [mm]\lambda[/mm] =0 sein um =0 zu erreichen.
>  >  [mm]\lambda*I_n[/mm] =0  [mm]I_n[/mm] =0
>  Nein. Sondern [mm]V=0*I_n=0.[/mm]

Einwand: Wir haben in den Übungen bewiesen dass  [mm] tr(I_n)=n [/mm]
also ist [mm] \lambda [/mm] * [mm] tr(I_n) [/mm] = [mm] \lambda [/mm] *n
so dass =0 steht muss [mm] \lambda=0 [/mm] sein

Wenn du mich eines besseren belehrt nehme ich den Einwand sofort wieder zurück ;)

> >
> > ZZ:
>  >  W+W' = [mm]M_{n \times n} (\IK)[/mm]

Angenommen wir hätten bereits eine Zerlegung
beliebige X [mm] \in M_{n \times n} (\IK) [/mm]
X = A + [mm] \lambda I_n [/mm]
mit tr(A)=0 also A spurenfrei.

tr(X)=tr(A+ [mm] \lambda I_n) [/mm] = tr(A) + [mm] \lambda [/mm] * [mm] tr(I_n) [/mm] = [mm] \lambda*tr(I_n)= \lambda [/mm] n
Also ist [mm] \lambda [/mm] = [mm] \frac{tr(A)}{n} [/mm]

Also ist für beliebige X [mm] \in M_{n \times n} (\IK) [/mm]
X = A + [mm] \frac{tr(A)}{n} I_n [/mm]
wobei A [mm] \in [/mm] W und [mm] \frac{tr(A)}{n} I_n \in [/mm] W'

Projektion auf W längs W'

> $ [mm] \pi_1(w)=w [/mm] $ für alle $ [mm] w\in [/mm] $ W
>  $ [mm] \pi_1(w')=0 [/mm] $  für alle $ [mm] w'\in [/mm] $ W'

[mm] \pi_1 [/mm] (X) = [mm] \pi_1(A [/mm] + [mm] \frac{tr(A)}{n} I_n) [/mm] = [mm] \pi_1(A) [/mm]

Projektion auf W' längs W
$ [mm] \pi_1(w)=0 [/mm] $ für alle $ [mm] w\in [/mm] $ W
$ [mm] \pi_1(w')=w' [/mm] $  für alle $ [mm] w'\in [/mm] $ W'
[mm] \pi_1 [/mm] (X) = [mm] \pi_1(A [/mm] + [mm] \frac{tr(A)}{n} I_n) [/mm] = [mm] \pi_1(\frac{tr(A)}{n} I_n) [/mm]

Bezug
                        
Bezug
Summen/Matrizen/Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:21 Di 28.02.2012
Autor: angela.h.b.


> > Hallo!
>  
> > > ZZ: W [mm]\cap[/mm] W' = 0
>  
> > Sei [mm]V\in[/mm] W [mm]\cap[/mm] W'.
>  >  Dann ist
>  >  >  V  [mm]\in[/mm] W -> tr(V)=0

>  >  und
>  >  >  V [mm]\in[/mm] W' -> W= [mm]\lambda[/mm] * [mm]I_n[/mm]

>  >  >  v [mm]\in[/mm] W [mm]\cap[/mm] W'
>  >  >  => [mm]tr(\lambda I_n) =\lambda[/mm] * [mm]tr(I_n)[/mm]

> > [mm]=\red{\lambda*n=}0[/mm]
>  >  >  also muss [mm]\lambda[/mm] =0 sein um =0 zu erreichen.
>  >  >  [mm]\lambda*I_n[/mm] =0  [mm]I_n[/mm] =0
>  >  Nein. Sondern [mm]V=0*I_n=0.[/mm]

>  Einwand: Wir haben in den Übungen bewiesen dass  
> [mm]tr(I_n)=n[/mm]
>  also ist [mm]\lambda[/mm] * [mm]tr(I_n)[/mm] = [mm]\lambda[/mm] *n
> so dass =0 steht muss [mm]\lambda=0[/mm] sein
>  
> Wenn du mich eines besseren belehrt nehme ich den Einwand
> sofort wieder zurück ;)

Hallo,

k.A., was Du willst. Daß [mm] tr(I_n)=n [/mm] ist, habe ich doch extra in rot eingefügt...


>  > >

> > > ZZ:
>  >  >  W+W' = [mm]M_{n \times n} (\IK)[/mm]
>  Angenommen wir hätten
> bereits eine Zerlegung
> beliebige X [mm]\in M_{n \times n} (\IK)[/mm]
>  X = A + [mm]\lambda I_n[/mm]
>  
> mit tr(A)=0 also A spurenfrei.
>  
> tr(X)=tr(A+ [mm]\lambda I_n)[/mm] = tr(A) + [mm]\lambda[/mm] * [mm]tr(I_n)[/mm] =
> [mm]\lambda*tr(I_n)= \lambda[/mm] n
>  Also ist [mm]\lambda[/mm] = [mm]\frac{tr(A)}{n}[/mm]

Nö. Es muß dann gelten [mm] $\lambda$ [/mm] = [mm] $\frac{tr(X)}{n}$. [/mm]

>  
> Also ist für beliebige X [mm]\in M_{n \times n} (\IK)[/mm]
>  X = A + [mm]\frac{tr(A)}{n} I_n[/mm]
>  wobei A [mm]\in[/mm] W und [mm]\frac{tr(A)}{n} I_n \in[/mm]  W'

Problem: Du hast bisher noch gar nicht verraten, was A sein soll.
Nur, daß sie spurfrei sein soll, aber wirmüßten schon wissen, welches A zu nehmen ist. Es wird ja nicht mit jeder belieben spurfreien Matrix A klappen.

LG Angela

>  
> Projektion auf W längs W'
>  > [mm]\pi_1(w)=w[/mm] für alle [mm]w\in[/mm] W

>  >  [mm]\pi_1(w')=0[/mm]  für alle [mm]w'\in[/mm] W'
> [mm]\pi_1[/mm] (X) = [mm]\pi_1(A[/mm] + [mm]\frac{tr(A)}{n} I_n)[/mm] = [mm]\pi_1(A)[/mm]
>  
> Projektion auf W' längs W
>  [mm]\pi_1(w)=0[/mm] für alle [mm]w\in[/mm] W
>   [mm]\pi_1(w')=w'[/mm]  für alle [mm]w'\in[/mm] W'
> [mm]\pi_1[/mm] (X) = [mm]\pi_1(A[/mm] + [mm]\frac{tr(A)}{n} I_n)[/mm] =
> [mm]\pi_1(\frac{tr(A)}{n} I_n)[/mm]  


Bezug
                                
Bezug
Summen/Matrizen/Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Mo 05.03.2012
Autor: sissile


> Nö. Es muß dann gelten $ [mm] \lambda [/mm] $ = $ [mm] \frac{tr(X)}{n} [/mm] $.

Ja natürlich!!

Also ist für beliebige X $ [mm] \in M_{n \times n} (\IK) [/mm] $
X = A + $ [mm] \frac{tr(X)}{n} I_n [/mm] $
wobei A $ [mm] \in [/mm] $ W und $ [mm] \frac{tr(A)}{n} I_n \in [/mm] $  W'

> Problem: Du hast bisher noch gar nicht verraten, was A sein soll.
> Nur, daß sie spurfrei sein soll, aber wirmüßten schon wissen, welches A zu nehmen ist. Es wird ja nicht mit jeder belieben spurfreien Matrix A klappen.

Du meinst:...Dass A spurfrei ist fordere ich momentan ja noch, also muss ich noch herausfinden wie für ein gegebenes X nun A aussieht .

[mm] X=A+\lambda* I_n [/mm]
mit tr(A)=0
Wert für [mm] \lambda=\frac{tr(X)}{n} [/mm]

Also sieht A so aus
A= X - [mm] \lambda I_n [/mm]

Wolltest du auf das hinaus?

> Projektion auf W längs W'
>  > $ [mm] \pi_1(w)=w [/mm] $ für alle $ [mm] w\in [/mm] $ W

>  >  $ [mm] \pi_1(w')=0 [/mm] $  für alle $ [mm] w'\in [/mm] $ W'
> [mm] \pi_1 [/mm]  (X) =  [mm] \pi_1(A [/mm]  +  [mm] \frac{tr(A)}{n} I_n) [/mm] = (A)
>  
> Projektion auf W' längs W
>  $ [mm] \pi_2(w)=0 [/mm] $ für alle $ [mm] w\in [/mm] $ W
>   $ [mm] \pi_2(w')=w' [/mm] $  für alle $ [mm] w'\in [/mm] $ W'
> [mm] \pi_2 [/mm] (X) = [mm] \pi_2(A [/mm] +  [mm] \frac{tr(A)}{n} I_n) [/mm] =
> [mm] \frac{tr(A)}{n} I_n [/mm]

Das ist aber korrekt oder??
Kurze Rückmeldung wäre fein ;))

Bezug
                                        
Bezug
Summen/Matrizen/Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Di 06.03.2012
Autor: angela.h.b.


> > Nö. Es muß dann gelten [mm]\lambda[/mm] = [mm]\frac{tr(X)}{n} [/mm].
>  Ja
> natürlich!!
>  
> Also ist für beliebige X [mm]\in M_{n \times n} (\IK)[/mm]
>  X = A +
> [mm]\frac{tr(X)}{n} I_n[/mm]
>  wobei A [mm]\in[/mm] W und [mm]\frac{tr(A)}{n} I_n \in[/mm]
>  W'
>  
> > Problem: Du hast bisher noch gar nicht verraten, was A sein
> soll.
>  > Nur, daß sie spurfrei sein soll, aber wirmüßten schon

> wissen, welches A zu nehmen ist. Es wird ja nicht mit jeder
> belieben spurfreien Matrix A klappen.
> Du meinst:...Dass A spurfrei ist fordere ich momentan ja
> noch, also muss ich noch herausfinden wie für ein
> gegebenes X nun A aussieht .
>
> [mm]X=A+\lambda* I_n[/mm]
>  mit tr(A)=0
> Wert für [mm]\lambda=\frac{tr(X)}{n}[/mm]
>
> Also sieht A so aus
>  A= X - [mm]\lambda I_n[/mm]
>  
> Wolltest du auf das hinaus?


Hallo,

ja.

Alles, was Du bisher getan hast, sind geheime Vorarbeiten, die Du auf einem Schmierzettel ausführen kannst. Diejenigen, die am Ende Deinen Beweis lesen, müssen all das gar nicht wissen.
Die überraschst Du genauso, wie Deine Chefs Dich immer überraschen, wenn sie in Beweisen plötzlich Kaninchen aus dem Hut zaubern:

Sei [mm] X\in [/mm] $ [mm] M_{n \times n} (\IK) [/mm] $.

Es ist

[mm] X=(X-$\frac{tr(X)}{n}$ I_n)+$\frac{tr(X)}{n}$ I_n. [/mm]

Wenn Du nun vorrechnest, daß [mm] (X-$\frac{tr(X)}{n}$ I_n) [/mm] spurfrei ist und sicherheitshalber noch erwähnst, daß [mm] $\frac{tr(X)}{n}$ I_n [/mm] natürlich ein Vielfaches der Einheitsmatrix ist, dann hast Du [mm] M_{n \times n} (\IK)=W+W' [/mm] gezeigt.


>  > Projektion auf W längs W'

>  >  > [mm]\pi_1(w)=w[/mm] für alle [mm]w\in[/mm] W

>  
> >  >  [mm]\pi_1(w')=0[/mm]  für alle [mm]w'\in[/mm] W'

>  > [mm]\pi_1[/mm]  (X) =  [mm]\pi_1(A[/mm]  +  [mm]\frac{tr(A)}{n} I_n)[/mm] = (A)

[mm] \pi_1(X)=\pi_1((X-$\frac{tr(X)}{n}$ I_n)+$\frac{tr(X)}{n}$ I_n)=(X-$\frac{tr(X)}{n}$ I_n) [/mm]

Die andere entsprechend.

LG Angela



> >  

> > Projektion auf W' längs W
>  >  [mm]\pi_2(w)=0[/mm] für alle [mm]w\in[/mm] W
>  >   [mm]\pi_2(w')=w'[/mm]  für alle [mm]w'\in[/mm] W'
>  > [mm]\pi_2[/mm] (X) = [mm]\pi_2(A[/mm] +  [mm]\frac{tr(A)}{n} I_n)[/mm] =

>  > [mm]\frac{tr(A)}{n} I_n[/mm]

> Das ist aber korrekt oder??
>  Kurze Rückmeldung wäre fein ;))




Bezug
                                                
Bezug
Summen/Matrizen/Projektion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Fr 09.03.2012
Autor: sissile

Klar!
Großes fettes Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]