matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikSumme von Zufallsvariablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "mathematische Statistik" - Summe von Zufallsvariablen
Summe von Zufallsvariablen < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Zufallsvariablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:50 So 02.03.2014
Autor: epsilonkleinerNull

Hallo liebes Forum,

ich bin mir bei einer Berechnung nicht sicher ob das so stimmt.

$X$ sei eine stetige und $Y$ eine diskrete Zufallsvariable. $f$ sei die Dichte von $X$ und $p(y)$ die Wahrscheinlichkeit, dass die Zufallsvariable $Y$ den Wert $y$ annimmt.

[mm] P(X+Y \leq s) = \sum_{y \in \mathbb{Z}} \int_{\{(x,y):x+y \leq s\}} f(x) p(y) dx = \sum_{y \in \mathbb{Z}} \int_{-\infty}^{s-y} f(x) p(y) dx = \sum_{y \in \mathbb{Z}} \int_{-\infty}^{s} f(z-y)p(y)dx = \int_{-\infty}^s \left( \sum_{y \in \mathbb{Z}} f(z-y)p(y) \right) dx [/mm]

Für die letzte Gleichung hab ich den Satz von der monotonen Konvergenz (Beppo Levi) verwendet.

Ist da ein Fehler drin oder ist das so richtig? Muss ich da noch etwas extra begründen?

Schonmal Danke fürs bis hier hin lesen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Summe von Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:04 So 02.03.2014
Autor: Gonozal_IX

Hiho,

deine erste Gleichung gilt nur, wenn X und Y unabhängig sind.
Für den letzten Schritt kannst du auch Fubini nutzen.
Ansonsten sieht das gut aus.

Gruß,
Gono.

Bezug
                
Bezug
Summe von Zufallsvariablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 So 02.03.2014
Autor: epsilonkleinerNull

Hi, danke für deine Antwort!

Die Zufallsvariablen $X$ und $Y$ sollen unabhängig sein, das hatte ich vergessen anzugeben. Gilt der Satz von Fubini nicht nur für Integrale? Hier ist ja eine unendliche Summe und ein Integral....

Bezug
                        
Bezug
Summe von Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Mo 03.03.2014
Autor: Gonozal_IX

Hiho,

eine unendliche Summe ist doch nichts anderes als das Integral über ein diskretes Maß.

Beispielsweise ist: [mm] $\summe_{k=0}^\infty 2^{-k} [/mm] = [mm] \integral_{[0,\infty)} 2^{-x} d\mu$ [/mm] falls [mm] \mu [/mm] das Zählmaß auf [mm] $\IN_0$ [/mm] ist.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]