matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieSumme von Lebesgue-Zerlegungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Summe von Lebesgue-Zerlegungen
Summe von Lebesgue-Zerlegungen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Lebesgue-Zerlegungen: Frage zu Aufgabe
Status: (Frage) überfällig Status 
Datum: 17:36 So 03.11.2013
Autor: Tipsi

Aufgabe
Hallo,
ich soll zeigen, dass, wenn
[mm] v_n [/mm] und [mm] v:=\sum_n v_n [/mm] endliche Maße auf dem endlichen Maßraum [mm] (\Omega, \sigma, \mu) [/mm] mit den Lebesgue-Zerlegungen [mm] v_c [/mm] << [mm] \mu, v_{n,c} [/mm] << [mm] \mu [/mm] sowie [mm] v_s [/mm] und [mm] v_{n,s} [/mm] singulär zu [mm] \mu, [/mm] gilt:
[mm] v_c=\sum_n v_{n,c} [/mm] und [mm] v_s [/mm] = [mm] \sum_n v_{n,s} [/mm] sowie [mm] \sum_n \frac{dv_{n,c}}{d\mu} [/mm] = [mm] \frac{dv_c}{d\mu}. [/mm]

Irgendwie schaut es offensichtlich aus, dass das gelten muss, aber beim Beweis komme ich irgendwie nicht weiter. Darum wäre es hilfreich, wenn ihr mir einen Tipp geben könntet, wie ich ihn am besten angehe.
Danke schon für eure Hilfe

        
Bezug
Summe von Lebesgue-Zerlegungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 05.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]