Summe unendlich fast sicher < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:52 Sa 26.11.2011 | Autor: | Teufel |
Aufgabe | Sei [mm] $(X_n)_{n \in \IN}$ [/mm] eine unabhängige Familie von Zufallsvariablen mit [mm] $P(X_n=1)=P(X_n=-1)=\frac{1}{2}$ [/mm] und ist [mm] $S_n=X_1+...X_n$ [/mm] für alle n, so ist [mm] $\limsup_{n\rightarrow\infty}S_n=\infty$ [/mm] fast sicher. |
Hi!
Hierzu habe ein einige Fragen.
Ich habe zuerst gezeigt, dass das Ereignis [mm] $B:=\{S=\infty \} [/mm] in der terminalen Sigmaalgebra liegt. Da die [mm] X_n [/mm] alle unabhängig sind, sind es auch die durch die [mm] X_n [/mm] erzeugten Sigmaalgebren. Nach dem Kolmogorovschen 0-1-Gesetz muss nun P(B)=0 oder P(B)=1 gelten. Wenn ich jetzt noch zeigen kann, dass P(B)>0, so habe ich ja meine gewünschte Aussage. Aber ich weiß nicht, wie ich diesen letzten Schritt machen kann. Ist der Weg bis dahin überhaupt richtig?
Vielen Dank!
|
|
|
|
> Sei [mm](X_n)_{n \in \IN}[/mm] eine unabhängige Familie von
> Zufallsvariablen mit [mm]P(X_n=1)=P(X_n=-1)=\frac{1}{2}[/mm] und ist
> [mm]S_n=X_1+...X_n[/mm] für alle n, so ist
> [mm]\limsup_{n\rightarrow\infty}S_n=\infty[/mm] fast sicher.
>
>
> Hi!
>
> Hierzu habe ein einige Fragen.
> Ich habe zuerst gezeigt, dass das Ereignis [mm]$B:=\{S=\infty \}[/mm]
> in der terminalen Sigmaalgebra liegt. Da die [mm]X_n[/mm] alle
> unabhängig sind, sind es auch die durch die [mm]X_n[/mm] erzeugten
> Sigmaalgebren. Nach dem Kolmogorovschen 0-1-Gesetz muss nun
> P(B)=0 oder P(B)=1 gelten. Wenn ich jetzt noch zeigen kann,
> dass P(B)>0, so habe ich ja meine gewünschte Aussage. Aber
> ich weiß nicht, wie ich diesen letzten Schritt machen
> kann. Ist der Weg bis dahin überhaupt richtig?
>
> Vielen Dank!
Die Überlegung scheint mir ok.
Mit Hilfe der Tschebyscheff-Ungleichung könntest du nun zeigen, dass [mm] \lim_{n\to\infty}P(S_n\ge M)=\frac{1}{2} [/mm] gelten muss für festes M>0, woraus das gewünschte folgt.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 02:32 So 27.11.2011 | Autor: | Teufel |
Hi!
Danke erst einmal.
Wie kriege ich das denn mit der Tschebytscheff-Ungleichung hin?
Ich weiß ja folgendes:
[mm] $P(S_n \ge [/mm] M) [mm] \le \frac{Var(S_n)}{M^2}=\frac{n}{M^2}$ [/mm] für alle M>0. Für $n [mm] \to \infty$ [/mm] folgt aber damit doch nur [mm] $P(S_n \ge M)<\infty$, [/mm] oder? Ich muss das ja irgendwie auch in die andere Richtung abschätzen, d.h. [mm] $\limes_{n\rightarrow\infty} P(S_n \ge [/mm] M)>0$. Aber dann habe ich ja auch noch das Problem, dass [mm] $P(\limes_{n\rightarrow\infty} S_n=\infty)<\limes_{n\rightarrow\infty} P(S_n \ge [/mm] M)$ gilt, also auch wenn ich das mit der Tschebytscheff-Ungleichung zeigen könnte, würde dann nichts hilfreiches folgen, oder übersehe ich da was?
Danke!
|
|
|
|
|
> Hi!
>
> Danke erst einmal.
>
> Wie kriege ich das denn mit der Tschebytscheff-Ungleichung
> hin?
Mit Tschebytscheff klappt das wohl doch nicht, soory, da hab ich nicht richtig nachgedacht. Aber es sollte mit dem zentralen Grenzwertsatz funktionieren, da [mm] S_n/\sqrt{n} [/mm] gegen eine Normalverteilung konvergiert.
> Ich weiß ja folgendes:
>
> [mm]P(S_n \ge M) \le \frac{Var(S_n)}{M^2}=\frac{n}{M^2}[/mm] für
> alle M>0. Für [mm]n \to \infty[/mm] folgt aber damit doch nur [mm]P(S_n \ge M)<\infty[/mm],
> oder? Ich muss das ja irgendwie auch in die andere Richtung
> abschätzen, d.h. [mm]\limes_{n\rightarrow\infty} P(S_n \ge M)>0[/mm].
> Aber dann habe ich ja auch noch das Problem, dass
> [mm]P(\limes_{n\rightarrow\infty} S_n=\infty)<\limes_{n\rightarrow\infty} P(S_n \ge M)[/mm]
> gilt, also auch wenn ich das mit der
> Tschebytscheff-Ungleichung zeigen könnte, würde dann
> nichts hilfreiches folgen, oder übersehe ich da was?
>
> Danke!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:08 So 27.11.2011 | Autor: | Teufel |
Hi!
Hm, den Satz hatten wir leider noch nicht. Und wir dürfen den sicher auch nicht anwenden. Das geht bestimmt irgendwie leichter.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:07 So 27.11.2011 | Autor: | Fry |
Hey,
im Allgemeinen ist ja [mm] $\limsup S_n$ [/mm] keine [mm] $(X_n)_n$-terminale [/mm] Funktion, man kann also das Kolmogorovsche 0-1-Gesetz nicht anwenden. Allerdings lässt sich mithilfe von Hewitt-Savage zeigen, dass [mm] $\limsup S_n$ [/mm] fast sicher konstant ist (siehe z.B. Maß und Wahrscheinlichkeit von Klaus Schmidt, 15.4.4, S.360) Falls [mm] $EX_1=0$ [/mm] und [mm] $P(X_1=0)<1$ [/mm] ist, so ist [mm] $\limsup S_n=\infty$ [/mm] P-f.s. Dieses Result ist unter dem Namen "Satz von Chung Fuchs" bekannt, auf den man dann das hier vorliegende Beispiel mit der Bernoullirrfahrt anwenden könnte.
LG
Fry
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 15:15 So 27.11.2011 | Autor: | Teufel |
Hi!
Hm, hört sich recht schwierig an. Diese ganzen Sachen sagen mir auch nichts und wahrscheinlich sollen wir das auch nicht verwenden. Kriegt man das auch irgendwie einfacher hin?
Aber dennoch ist dieses Hewitt-Savage-0-1-Gesetzt auch spannend, danke für den Hinweis!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Mi 30.11.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|