Summe 2er Vektorfelder < SchulPhysik < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Geben Sie die x-Koordinate des von zwei Ladungen [mm] q_1 [/mm] = Q und [mm] q_2 [/mm] = -2Q erzeugten elektrischen Feldes an. Die Ladung [mm] q_1 [/mm] befinde sich
am Ort [mm] \vec r_1 [/mm] = [mm] \begin{pmatrix} d \\ 0 \\ 0 \end{pmatrix}, [/mm] die Ladung [mm] q_2 [/mm] am Ort [mm] \vec r_2 [/mm] = [mm] \begin{pmatrix} 0 \\ d \\ 0 \end{pmatrix}. [/mm] |
Hallo,
mir leuchtet die Antwort zu dieser Aufgabe in meinem Buch nicht so ganz ein. Dort steht:
[mm] $E_x(\vec r)=\bruch{Q}{4 \pi \epsilon_0}*\left(\bruch{x-d}{\left(\wurzel{(x-d)^2+y^2+z^2}\right)^3}-\bruch{2x}{\left(\wurzel{x^2+(y-d)^2+z^2}\right)^3} \right)$
[/mm]
Müsste es aber im 2. Term in der Klammer im Nenner (der ja der Betrag des Abstandsvektors von [mm] q_2 [/mm] zu x ist - in der 3. Potenz) nicht heißen
[mm] $E_x(\vec r)=\bruch{Q}{4 \pi \epsilon_0}*\left(\bruch{x-d}{\left(\wurzel{(x-d)^2+y^2+z^2}\right)^3}-\bruch{2x}{\left(\wurzel{x^2+d^2+z^2}\right)^3} \right)$
[/mm]
Vielen Dank für eine Antwort.
LG, Martinius
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:41 Mo 25.02.2008 | Autor: | leduart |
Hallo dein Buch hat recht und nicht du du brauchst ja den Abstandvon [mm] r=\vektor{x \\ y \\z} [/mm] zum Punkt [mm] \vektor{0 \\ d \\0} [/mm] also den Betrag von [mm] \vektor{x \\ y-d \\z} [/mm] und der ist mit der angegebenen Wurzel richtig.
Um Anschaungsfehler zu vermeiden, sollte man die Differenzen der Vektoren wie ich erstmal hinschreiben.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:29 Mo 25.02.2008 | Autor: | Martinius |
Hallo leduart,
vielen Dank für die Antwort!
LG, Martinius
|
|
|
|