matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationSubstitutionsregel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Substitutionsregel
Substitutionsregel < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitutionsregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Mo 06.07.2009
Autor: Piatty

Aufgabe
Integriere mit Hilfe der Substitutionsregel:

[mm] \integral_{2}^{b}{ \bruch{1}{x*ln^{3}} dx} [/mm]

[mm] \integral_{a}^{b}{e^{cos(x)}sin(x) dx} [/mm]

Hallo
ich habe mal ein paar fragen..
also bei der ersten aufgabe weiß ich das
z=1/x und z'= ln(x)
außerdem weiß ich das (dx/dz)*dz =dx
ich weiß allerding trotzdem nicht wie ich das nun zusammenbauen kann, so dass ich es problemlos integrieren kann...

bei der zweiten weiß ich das
z=cos(x) und z'= sin(x)
hier besteht aber das selbe problem...
WIe integriere ich nun???
Schonmal danke für eure Hilfe...

        
Bezug
Substitutionsregel: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Mo 06.07.2009
Autor: Al-Chwarizmi


> Integriere mit Hilfe der Substitutionsregel:
>  
> [mm]\integral_{2}^{b}{ \bruch{1}{x*(ln\red{(x)})^{3}} dx}[/mm]
>  
> [mm]\integral_{a}^{b}{e^{cos(x)}sin(x) dx}[/mm]
>  Hallo
> ich habe mal ein paar fragen..
>  also bei der ersten aufgabe weiß ich das
> z=1/x und z'= ln(x)      [notok]

....dann weißt du etwas, das ich nicht weiß ;-)

es ist doch gerade umgekehrt !

>  außerdem weiß ich das (dx/dz)*dz =dx
>  ich weiß allerding trotzdem nicht wie ich das nun
> zusammenbauen kann, so dass ich es problemlos integrieren
> kann...

also:   $\ z=ln(x)$ , [mm] z'=\bruch{dz}{dx}=\bruch{1}{x} [/mm] , [mm] dz=\bruch{1}{x}*dx [/mm]

> [mm]\integral_{2}^{b}{ \bruch{1}{x*(ln(x))^3}\ dx}\ =\ \integral_{....}^{....}\bruch{1}{z^3}\ dz[/mm]

Die Grenzen muss man entweder mit trans-
formieren oder aber nach ausgeführter
Integration erst zurücksubstituieren, um
dann die alten x-Grenzen einzusetzen.
  

> bei der zweiten weiß ich das
>  z=cos(x) und z'= sin(x)     [notok]

falsches Vorzeichen !

>  hier besteht aber das selbe problem...
>  WIe integriere ich nun???

Das geht dann ganz analog wie das erste
Beispiel.


LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]