matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteStufe der Hauptvektoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Stufe der Hauptvektoren
Stufe der Hauptvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stufe der Hauptvektoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:32 Di 31.03.2009
Autor: physicus

Hi zusammen

Irgendwie tu ich mich richtig schwer mit der Jordan-Normalform. Vielleicht könnt ihr mir ja helfen. Wenn ich einen Hauptvektor [mm] v_m [/mm] der Stufe m habe und ich wende [mm] (\phi [/mm] - [mm] \lambda \cdot [/mm] id) auf [mm] v_m [/mm] an. also

[mm] (\phi [/mm] - [mm] \lambda \cdot id)(v_m) [/mm] = [mm] v_{m-1} [/mm]

wieso bekomme ich dann den Hauptvektor der Stufe m-1?
Noch etwas zum Verständnis:
1. Gibt es zu einer Stufe m mehrere Hauptvektoren? Schon oder?
2. Wie steht es mit der linearen Unabhängigkeit? Ist es richtig, dass mein [mm] v_m [/mm] unter mehrfachem [mm] (\phi [/mm] - [mm] \lambda \cdot id)^k [/mm] , wobei k [mm] \le [/mm] m alle lineare unabhängig ist?
Könnte mir jemand das Schema mit den Hauptvektoren erklären? Irgendwie fehlt mir dafür die Anschauung.  So das wärs erstmal!
schon mal herzlichen Dank!

Cheers

        
Bezug
Stufe der Hauptvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Di 31.03.2009
Autor: MathePower

Hallo physicus,

> Hi zusammen
>  
> Irgendwie tu ich mich richtig schwer mit der
> Jordan-Normalform. Vielleicht könnt ihr mir ja helfen. Wenn
> ich einen Hauptvektor [mm]v_m[/mm] der Stufe m habe und ich wende
> [mm](\phi[/mm] - [mm]\lambda \cdot[/mm] id) auf [mm]v_m[/mm] an. also
>  
> [mm](\phi[/mm] - [mm]\lambda \cdot id)(v_m)[/mm] = [mm]v_{m-1}[/mm]
>  
> wieso bekomme ich dann den Hauptvektor der Stufe m-1?


Die allgemeine Gleichung, aus der man einen Hauptvektor m-ter Stufe normal bestimmt, lautet:

[mm]\left(1\right) \ \left(\phi-\lambda*\operatorname{id}\right)^{m}*v_{m}=0[/mm]

Für den Hauptvektor (m-1). Stufe gilt:

[mm]\left(2\right) \ \left(\phi-\lambda*\operatorname{id}\right)^{m-1}*v_{m-1}=0[/mm]

Schreiben wir erstere Gleichung etwas um:

[mm]\left(1'\right) \ \left(\phi-\lambda*\operatorname{id}\right)^{m-1}*\left(\phi-\lambda*\operatorname{id}\right)*v_{m}=0[/mm]

Ein Vergleich mit (2) liefert:

[mm]\left(\phi-\lambda*\operatorname{id}\right)*v_{m}=v_{m-1}[/mm]


>  Noch etwas zum Verständnis:
> 1. Gibt es zu einer Stufe m mehrere Hauptvektoren? Schon
> oder?
>  2. Wie steht es mit der linearen Unabhängigkeit? Ist es
> richtig, dass mein [mm]v_m[/mm] unter mehrfachem [mm](\phi[/mm] - [mm]\lambda \cdot id)^k[/mm]
> , wobei k [mm]\le[/mm] m alle lineare unabhängig ist?
> Könnte mir jemand das Schema mit den Hauptvektoren
> erklären? Irgendwie fehlt mir dafür die Anschauung.  So das
> wärs erstmal!
> schon mal herzlichen Dank!


Siehe hier: []Hauptraum - Wikipedia


>  
> Cheers


Gruß
MathePower

Bezug
        
Bezug
Stufe der Hauptvektoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 03.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]