matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationStrikte Positivität  Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Strikte Positivität Integral
Strikte Positivität Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Strikte Positivität Integral: Frage wegen Beweis
Status: (Frage) beantwortet Status 
Datum: 21:16 So 15.04.2012
Autor: BerlinerKindl

Aufgabe
Zeigen Sie: Sei f : I = [a,b] [mm] \rightarrow \IR [/mm] eine stetige Funktion mit [mm] f(x)\ge0 [/mm]  für alle x [mm] \in [/mm] [a,b], dann gilt:
[mm] \integral_{a}^{b}{f(x) dx}=0 \Rightarrow [/mm] f = 0

Meine Frage wäre, kann ich da auch mit einem Gegenbeispiel arbeiten wie beispielsweis cos(x) oder sin(x), wenn das nicht geht, wie gehe ich bei dem Beweis vor....
Ich weiß schon mal, dass ich die Kontraposition einnehmen werde.
Kann ich mich bei dem Beweis an die Definition des Integrals halten, also, dass die Ober- und Untersumme gleich sein müssen und daraus folgern, dass die Funktion null sein muss ??
oder stelle ich mich doof an ??

Für Antworten bin ich sehr dankbar....

        
Bezug
Strikte Positivität Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 So 15.04.2012
Autor: steppenhahn

Hallo,


> Zeigen Sie: Sei f : I = [a,b] [mm]\rightarrow \IR[/mm] eine stetige
> Funktion mit [mm]f(x)\ge0[/mm]  für alle x [mm]\in[/mm] [a,b], dann gilt:
> [mm]\integral_{a}^{b}{f(x) dx}=0 \Rightarrow[/mm] f = 0


>  Meine Frage wäre, kann ich da auch mit einem
> Gegenbeispiel arbeiten wie beispielsweis cos(x) oder
> sin(x),

???
Wenn du etwas beweisen sollst, wird es kein Gegenbeispiel zu der Aussage geben!
[mm] $\cos(x)$ [/mm] und [mm] $\sin(x)$ [/mm] sind jedenfalls keine positive Funktionen, bzw. wenn du positive Bereiche betrachtest wird das Integral nicht Null.


> wenn das nicht geht, wie gehe ich bei dem Beweis
> vor....
>  Ich weiß schon mal, dass ich die Kontraposition einnehmen
> werde.


Genau, also ein Widerspruchsbeweis.
Angenommen, es gäbe eine stetige Funktion [mm] $f:[a,b]\to \IR$ [/mm] mit $f(x) [mm] \ge [/mm] 0$ für alle $f(x) [mm] \ge [/mm] 0$, und diese Funktion erfüllt

[mm] $\int_{a}^{b}f(x) [/mm] \ dx = 0$ und $f [mm] \not= [/mm] 0$.

[Du musst hier nicht mit Untersummen und Obersummen arbeiten!]

Die Beweisidee ist folgende: Wenn die Funktion f nicht die Nullfunktion ist, gibt es eine Stelle, an welcher f einen Funktionswert [mm] \not= [/mm] 0 annimmt.
Weil die Funktion f stetig ist, nimmt sie auch in einer Umgebung von diesem Wert positive Werte an....


Kommst du damit weiter?
Selbst wenn nicht: Versuche erstmal, das obige formal aufzuschreiben.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]