matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieStoppen von stetigen Martingal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Stoppen von stetigen Martingal
Stoppen von stetigen Martingal < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stoppen von stetigen Martingal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Fr 27.07.2012
Autor: kalor

Hi

Ich habe eine Frage zu stetigen Martingale, eigentlich reicht bereits rechtsseitig stetig, aber wir können annehmen, dass das Martingal $M$ stetig ist (Was folgt, sei immer von einem kontinuierlichen Martingal die Rede, NICHT einem diskreten). Nun gibt es einen Satz, Optional sampling theorem von Doob, der sagt: Wenn $M$ rechtsseitig stetig ist und ich zwei Stoppzeiten habe, [mm] $\sigma\le\tau$. [/mm] Wenn $M$ gleichmässig integrierbar ist oder [mm] $\tau$ [/mm] beschränkt, dann gilt

[mm] $$E[M_\tau|\mathcal{F}_\sigma]=M_\tau$$ [/mm]

Nun verstehe ich nicht ganz den Unterschied zu folgendem Satz:
Wenn $M$ ein rechtseitigstetiges Martingal ist und [mm] $\tau$ [/mm] eine Stoppzeit, dann ist auch [mm] $M^\tau:=M_{t\wedge \tau}$ [/mm] ein martingal, wobei [mm] $\wedge$ [/mm] die Minimumsfunktion ist.

Was genau ist der Unterschied zwischen diesen Sätzen?

Wenn wir nun ein lokales Martingal betrachten, d.h. es existiert eine Folge von Stoppzeiten die gegen [mm] $+\infty$ [/mm] konvergieren P-f.s. so dass [mm] $M^{\tau_n}$ [/mm] ein Martingal ist. Sei [mm] $\rho$ [/mm] eine weitere Stoppzeit. Welchen der beiden oben genannten Sätze muss ich verwenden um zu zeigen, dass [mm] $M^\tau$ [/mm] (gestoppte lokale Martingal) wieder ein lokales martingal ist?

Danke für die Hilfe!!!

KaloR

        
Bezug
Stoppen von stetigen Martingal: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Fr 27.07.2012
Autor: Gonozal_IX

Hiho,

> Was genau ist der Unterschied zwischen diesen Sätzen?

Der eine macht eine Aussage über eine Zufallsvariable, der andere über einen stochastischen Prozess.

> Welchen der beiden oben  genannten Sätze muss ich verwenden um zu zeigen, dass [mm]M^\tau[/mm] (gestoppte lokale Martingal) wieder ein lokales martingal ist?

Du meinst sicher [mm] $M^\rho$. [/mm]
Den zweiten.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]