matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseStochastisches Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "stochastische Prozesse" - Stochastisches Integral
Stochastisches Integral < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastisches Integral: bedingter erwartungswert
Status: (Frage) überfällig Status 
Datum: 15:12 Do 26.04.2012
Autor: torstentw

Hallo zusammen,

Ich habe das maßwechsel martingal [mm] Z_t [/mm] mit

[mm] Z_t [/mm] := [mm] \frac{dQ}{dP} \Big |_{F_t} [/mm] = exp(- [mm] \lambda B_t [/mm] - [mm] \frac{1}{2} \lambda^2 [/mm] t), wobei [mm] Z_0=1 [/mm] gegeben ist.

[mm] \lambda [/mm] ist konstant.
Nun muss ich folgenden Erwartungswert

[mm] E[Z_T^q | F_t] [/mm] bestimmen.

Mein Ergebnis stimmt leider nicht.

Mit [mm] E[B_T | F_t] [/mm] = [mm] B_t [/mm] erhalte ich:

[mm] E[Z_T^q [/mm] | [mm] F_t] [/mm] = E[exp(- [mm] \frac{1}{2} [/mm] q [mm] \lambda^2 [/mm] T - [mm] \lambda B_T [/mm] q) | [mm] F_t] [/mm]


wie komme ich hier weiter?
Viele Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Stochastisches Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 Do 26.04.2012
Autor: torstentw

[mm] \lambda>0 [/mm] ist dabei eine konstante.> Hallo zusammen,


Bezug
        
Bezug
Stochastisches Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 30.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]