matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStochastische Abhängigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Stochastische Abhängigkeit
Stochastische Abhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 Sa 14.11.2009
Autor: jaruleking

Aufgabe
In einer Urne befinden sich 3 Kugeln, 2 rote und 1 weiße. Man ziehe zwei Ziehungen durch und betrachte die Ereignisse A = erster zug rot und B=zweiter Zug weiß. Untersuchen Sie, ob die Ereignisse A und unabhängig sind, falls die zwei Ziehungen ohne Zurücklegen durchgeführt werden.

Hi,

ich weiß nicht. Ob ich das bei dieser Aufgabe richtig gemacht habe, denn normalerweise ist ja ziehen ohne Zurücklegen eher stochstisch abhängig.

Also meine Lösung.

Ziehen wir zuerst eine rote, dann ist die W. für B im zweiten Zug nur noch

P(B)=1/2, die W. für A ist P(A)=2/3.

=> P(A [mm] \cap B)=P(A)*P(B)=\bruch{2}{6}=\bruch{1}{3} [/mm]

d.h. wir haben jetzt: [mm] P(A\B)=\bruch{P(A \cap B)}{P(B)}=\bruch{1/3}{1/2}=\bruch{2}{3}=P(A). [/mm]

Damit folgt, dass die Ereignisse stochastisch unabhängig sind, richtig?? Das gleiche würde in dieser Aufgabe auch gelten, wenn ich mit Zurücklegen ziehen würde, oder??

Danke für Hilfe.

Grüße

        
Bezug
Stochastische Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 02:13 So 15.11.2009
Autor: barsch

Hi,

> Also meine Lösung.
>  
> Ziehen wir zuerst eine rote, dann ist die W. für B im
> zweiten Zug nur noch
>  
> P(B)=1/2, die W. für A ist P(A)=2/3.

[ok]
  

> [mm] P(A\cap{B})=\red{\bruch{2}{3}*\bruch{1}{2}}=P(A)*P(B)=\bruch{2}{6}=\bruch{1}{3} [/mm]

[ok]

> d.h. wir haben jetzt: [mm]P(A\B)=\bruch{P(A \cap B)}{P(B)}=\bruch{1/3}{1/2}=\bruch{2}{3}=P(A).[/mm]
>  
> Damit folgt, dass die Ereignisse stochastisch unabhängig
> sind, richtig??

Richtig, A und B stochastisch unabhängig, wenn

    [mm] P(A\cap{B})=P(A)\cdot{P(B)}. [/mm]


> Das gleiche würde in dieser Aufgabe auch
> gelten, wenn ich mit Zurücklegen ziehen würde, oder??

Rechne doch einfach mal nach!
  
Gruß
barsch

Bezug
                
Bezug
Stochastische Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 So 15.11.2009
Autor: jaruleking

HI

> P(B)=1/2, die W. für A ist P(A)=2/3.

[ok]
  

> $ [mm] P(A\cap{B})=\red{\bruch{2}{3}\cdot{}\bruch{1}{2}}=P(A)\cdot{}P(B)=\bruch{2}{6}=\bruch{1}{3} [/mm] $

[ok]

> d.h. wir haben jetzt: $ [mm] P(A\B)=\bruch{P(A \cap B)}{P(B)}=\bruch{1/3}{1/2}=\bruch{2}{3}=P(A). [/mm] $
>  
> Damit folgt, dass die Ereignisse stochastisch unabhängig
> sind, richtig??

> Richtig, A und B stochastisch unabhängig, wenn
>   $ [mm] P(A\cap{B})=P(A)\cdot{P(B)}. [/mm] $


Also du sagst auch, dass die Rechnung so richtig ist?? Die Sache ist, im Internet und in der Literatur findet man immer, dass bei Kugeln ohne Zurücklegen die Ereignisse Stochastisch abhängig sind. Hier in diesem Beispiel könnte ich ja auch so vorgehen:

Die W. eine rote zuerst zu ziehen liegt bei P(A)=2/3. Man kann also hier schon mal sagen, dass B gar keinen Einfluss auf A hat, da ja A zuerst gezogen wird. So, wurde dann A einmal gezogen, bleiben nur noch zwei Kugeln, also ist [mm] P(B\\A)=1/2. [/mm]

So damit die Ereignisse aber stochatisch unabhängig sind, muss ja auch gelten:

[mm] P(B\\A)=P(B), [/mm] dies ist aber nicht der Falle, denn wir haben ja [mm] P(B\\A)=1/2\not=1/3=P(B). [/mm]

Weiß deswegen nämlich gerae nicht, was jetzt richtig ist. Kann mich vielleicht wer aufklären???

Gruß

Bezug
                        
Bezug
Stochastische Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 So 15.11.2009
Autor: luis52

Moin Steve,

ein zweites Kriterium besagt, dass $A_$ und $B_$ unabhaengig sind, wenn gilt [mm] $P(B\mid [/mm] A)=P(B)$.  Ueberpruefe das mal.  Dann wirst du sehen, dass deine Vermutung zutrifft.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]