matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikStochastik, Wahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik" - Stochastik, Wahrscheinlichkeit
Stochastik, Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik, Wahrscheinlichkeit: mit Beachtung der Reihenfolge
Status: (Frage) beantwortet Status 
Datum: 21:34 Di 23.03.2010
Autor: RoseSmith

Aufgabe
Im Rückblick auf ihre Schulziet erinnern sich 46% der Bundesbürger gern an den Mathematikunterricht.
Untersuchen Sie, ob das Eintreten des Ereignisses A oder Des Ereignisses B wahrscheinlicher ist:
A: Nur der zweite und der vierte von fünf nacheinander befragten Bundesbüregern denken gern and den Mathematikunterricht zurück.
B: Unter fünf zufällig ausgewählten Bundesbürgern befinden sich genau zwei, die gern an den Mathematikunterricht zurückdenken.
Berechnen Sie die Wahrscheinlichkeit des Ereignisses
C: Unter zehn zufällig ausgewählten Bundesbürgern befinden sich höchstens zwei, die sich nicht gern an den Mathematikunterricht erinnern.    

zu B) n=5
k=2
p=0.46
[mm]P(X=2)=\pmat{ 5\\ 2}*0.46^{2}*0.54^{3}=0.3332[/mm]
zu C)
n=10
[mm] k\le [/mm] 2
p= 0.54, hier nehme ich die Gegenwahrscheinlichkeit.
[mm]P(X\le2)=\pmat{ 10 \\ 2 }*0.54^{2}*0.46^{8}+...+\pmat{10\\0}*0.54^{0}*0.46^{10}=0.0315[/mm]

Meine Frage:
Sind die Lösungen für B und C richtig?
zu A) habe ich keine Idee, weil man auf die Reihen Folge achten muss. Hast jemand einen Lösungsweg für mich?

Danke im Voraus.

        
Bezug
Stochastik, Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Di 23.03.2010
Autor: Blech

Hi,

> Im Rückblick auf ihre Schulziet erinnern sich 46% der
> Bundesbürger gern an den Mathematikunterricht.
> Untersuchen Sie, ob das Eintreten des Ereignisses A oder
> Des Ereignisses B wahrscheinlicher ist:

Also so wie der Text geschrieben ist, war das die gesamte Aufgabe. Antwort ist offensichtlich B, da A ein Spezialfall von B ist.

>  A: Nur der zweite und der vierte von fünf nacheinander
> befragten Bundesbüregern denken gern and den
> Mathematikunterricht zurück.

1. denkt nicht gern dran zurück, 2. schon, 3. nicht, 4. schon, fünfter nicht:

$0.54*0.46*0.54*0.46*0.54 = [mm] 0.46^2*0.54^3$ [/mm]

Daß das so sein muß, nutzt Du auch in B:

>  B: Unter fünf zufällig ausgewählten Bundesbürgern
> befinden sich genau zwei, die gern an den
> Mathematikunterricht zurückdenken.

[mm] $\underbrace{\pmat{ 5\\ 2}}_{\text{Anzahl Möglichkeiten 2 aus 5 auszuwählen}}*\underbrace{0.46^{2}*0.54^{3}}_{\text{Wkeit für jede dieser Möglichkeiten}}$ [/mm]

A ist eine dieser [mm] $\pmat{ 5\\ 2}$ [/mm] Möglichkeiten, bei denen sich genau 2 positiv erinnern.


> Meine Frage:
>  Sind die Lösungen für B und C richtig?

Das sind sie. Zumindest die Formeln. Bei der C komm ich auf 0.0317. Wenn ich tippen müßte, würde ich sagen, Du hast [mm] $0.54^0=1$ [/mm] falsch. Oder Dein TR ist Sch*.   =)

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]