matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseStoch. Differentialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "stochastische Prozesse" - Stoch. Differentialgleichung
Stoch. Differentialgleichung < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stoch. Differentialgleichung: Varianz
Status: (Frage) überfällig Status 
Datum: 12:57 Fr 16.05.2008
Autor: Landgraf

Aufgabe
Lösen Sie die stochastische Differentialgleichung:
[mm] dr_{t} = \kappa(\theta-r_{t}) + \sigma\wurzel{r_{t}}dz_{t} [/mm]
und bestimmen Sie
[mm] E[r_{t}|r_{s}] [/mm] und Var [mm] [r_{t}|r_{s}] [/mm] wobei t [mm] \in [/mm] [s,T]

dz ist ein Wiener Prozess
Ich glaube Lösung und Erwartungswert stimmen bei mir, mit der Varianz habe ich aber so meine Probleme. Bisher habe ich folgendes gerechnet:

Zunächst habe ich die Gleichung mit dem "Integrationsfaktor" [mm] e^{\kappa t} [/mm] multipliziert:

(1)   [mm] e^{\kappa t}dr_{t} = e^{\kappa t}\kappa(\theta-r_{t}) + e^{\kappa t}\sigma\wurzel{r_{t}}dz_{t} [/mm]

Und dann [mm] d(e^{\kappa t}r_{t}) [/mm] betrachtet:

(2)   [mm] d(e^{\kappa t}r_{t}) = \kappa e^{\kappa t}r_{t}dt + e^{\kappa t}dr_{t} [/mm]

Sodann habe ich den letzten Faktor in (2) durch (1) ersetzt:

[mm] d(e^{\kappa t}r_{t}) = \kappa e^{\kappa t}r_{t}dt + e^{\kappa t}\kappa(\theta-r_{t}) + e^{\kappa t}\sigma\wurzel{r_{t}}dz_{t} \Rightarrow d(e^{\kappa t}r_{t}) = e^{\kappa t}\kappa \theta + e^{\kappa t}\sigma\wurzel{r_{t}}dz_{t} [/mm]

Itô-Integration ergibt:
[mm] e^{\kappa t}r_{t} [/mm] =  [mm] r_{s}e^{\kappa s} [/mm] + [mm] \integral_{s}^{t}{e^{\kappa \tau}\kappa \theta d\tau} [/mm] + [mm] \integral_{s}^{t}{e^{\kappa \tau}\sigma\wurzel{r_{\tau}}dz_{\tau}} [/mm]

[mm] e^{\kappa t}r_{t} [/mm] =  [mm] r_{s}e^{\kappa s} [/mm] + [mm] \theta (e^{\kappa t} [/mm] - [mm] e^{\kappa s}) [/mm] + [mm] \integral_{s}^{t}{e^{\kappa \tau}\sigma\wurzel{r_{\tau}}dz_{\tau}} [/mm]

[mm] r_{t} [/mm] = [mm] \theta [/mm] + [mm] e^{-\kappa(t-s)}(r_{s}-\theta) [/mm] + [mm] e^{-\kappa t}\integral_{s}^{t}{e^{\kappa \tau}\sigma\wurzel{r_{\tau}}dz_{\tau}} [/mm]

Soweit meine Lösung für die SDG.

Erwartungswert ist dann einfach:
[mm] E[r_{t}|r_{s}] = \theta + e^{-\kappa(t-s)}(r_{s}-\theta) [/mm]

Nun aber zur Varianz. Um es mir einfacher zu machen, nehme ich an [mm] \theta [/mm] = 0, denn das sollte keinen Einfluss auf die Varianz haben.
Dann rechne ich:

Var [mm] [r_{t}|r_{s}] [/mm] = [mm] E[r_{t}^2|r_{s}] [/mm] - [mm] E[r_{t}|r_{s}]^2 [/mm]        mit [mm] E[r_{t}|r_{s}] [/mm] = [mm] e^{-\kappa(t-s)}r_{s} [/mm]

[mm] E[r_{t}|r_{s}]^2 [/mm] = [mm] e^{-2\kappa(t-s)}r_{s}^2 [/mm]
[mm] E[r_{t}^2|r_{s}] [/mm] = [mm] E[(e^{-\kappa(t-s)}r_{s} [/mm] + [mm] e^{-\kappa t}\integral_{s}^{t}{e^{\kappa \tau}\sigma\wurzel{r_{\tau}}dz_{\tau}})^2|r_{s}] [/mm]
[mm] E[r_{t}^2|r_{s}] = E[e^{-2\kappa(t-s)}r_{s}^2 + 2*e^{-\kappa(t-s)}r_{s}*e^{-\kappa t}\integral_{s}^{t}{e^{\kappa \tau}\sigma\wurzel{r_{\tau}}dz_{\tau}} + e^{-2\kappa t}\integral_{s}^{t}{e^{2\kappa \tau}\sigma^2r_{\tau}dz_{\tau}^2}|r_{s}] [/mm]    

Hier weiß ich nicht mehr so recht weiter. Wie werde ich die Integrale los?

        
Bezug
Stoch. Differentialgleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 So 18.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]