matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikStirling Zahlen, Basistransfor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Diskrete Mathematik" - Stirling Zahlen, Basistransfor
Stirling Zahlen, Basistransfor < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stirling Zahlen, Basistransfor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:15 Do 07.02.2013
Autor: quasimo

Aufgabe
Die Polynome mit komplexen Koeffizienten bilden einen Vektorraum über [mm] \IC. [/mm]
In dem Vektorraum bilden die Polynome [mm] (x^n)_{n=0}^\infty [/mm] als auch Polynome [mm] (x^{\underline{n}})_{n=0}^\infty [/mm] eine Basis.
Die Gleichung [mm] x^k [/mm] = [mm] \sum_{i=0}^n S_{k,i} x^{\underline{i}} [/mm] besagt, dass die entsprechende Basistransformation die Stirlingzahlen zweiter Art beschreiben.

wobei [mm] n^{\underline{i}}=n*(n-1)..*(n-i+1) [/mm]

Nun hat der lehrer dazugeschrieben
[mm] (S_{k,i})_{k,i} [/mm] * [mm] \vektor{1\\ x \\ \vdots \\ x^{\underline{k}}} [/mm] =  [mm] \vektor{1\\ x \\ \vdots \\ x^k} [/mm]
Jetzt meinte er mit [mm] S_{k,i} [/mm] sein eine Matrix gemeint. Welche Matrix ist da  gemeint? Ich dachte vorher das wären Skalare mit mit den Vektor multipliziert werden??Oder hab ich was falsch verstanden bez Matrix in den Zusammenhang?

LG

        
Bezug
Stirling Zahlen, Basistransfor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Do 07.02.2013
Autor: meili


> Die Polynome mit komplexen Koeffizienten bilden einen
> Vektorraum über [mm]\IC.[/mm]
>  In dem Vektorraum bilden die Polynome [mm](x^n)_{n=0}^\infty[/mm]
> als auch Polynome [mm](x^{\underline{n}})_{n=0}^\infty[/mm] eine
> Basis.
>  Die Gleichung [mm]x^k[/mm] = [mm]\sum_{i=0}^n S_{k,i} x^{\underline{i}}[/mm]
> besagt, dass die entsprechende Basistransformation die
> Stirlingzahlen zweiter Art beschreiben.
>  
> wobei [mm]n^{\underline{i}}=n*(n-1)..*(n-i+1)[/mm]
>  Nun hat der lehrer dazugeschrieben
>  [mm](S_{k,i})_{k,i}[/mm] * [mm]\vektor{1\\ x \\ \vdots \\ x^{\underline{k}}}[/mm]
> =  [mm]\vektor{1\\ x \\ \vdots \\ x^k}[/mm]
>  Jetzt meinte er mit
> [mm]S_{k,i}[/mm] sein eine Matrix gemeint. Welche Matrix ist da  
> gemeint? Ich dachte vorher das wären Skalare mit mit den
> Vektor multipliziert werden??Oder hab ich was falsch
> verstanden bez Matrix in den Zusammenhang?

Die einzelnen [mm] $S_{k,i}$ [/mm] sind Skalare (aus den Gleichungen [mm]x^k[/mm] = [mm]\sum_{i=0}^n S_{k,i} x^{\underline{i}}[/mm] )
Sie werden zu der Matrix [mm](S_{k,i})_{k,i}[/mm]  zusammengefasst.
Wobei es etwas Konfusion mit den Indices gibt.
Eine Zeile aus [mm](S_{k,i})_{k,i}[/mm] (skalar-)multipliziert mit dem Vektor [mm]\vektor{1\\ x \\ \vdots \\ x^{\underline{k}}}[/mm] ergibt die
entsprechende Komponente des Vektors [mm]\vektor{1\\ x \\ \vdots \\ x^k}[/mm].
Dies ist nur eine andere Schreibweise der Gleichung [mm]x^k[/mm] = [mm]\sum_{i=0}^n S_{k,i} x^{\underline{i}}[/mm]
für das entsprechende k. (Wobei man hier einen anderen Buchstaben
wählen sollte, der von 0 bis k läuft.)

>  
> LG

Gruß
meili

Bezug
                
Bezug
Stirling Zahlen, Basistransfor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:01 Sa 09.02.2013
Autor: quasimo

danke für die erklärung

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]