matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikStichprobenvarianz bei N-Vert.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "mathematische Statistik" - Stichprobenvarianz bei N-Vert.
Stichprobenvarianz bei N-Vert. < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stichprobenvarianz bei N-Vert.: Varianz der Stichprobenvarianz
Status: (Frage) beantwortet Status 
Datum: 12:47 Do 29.11.2007
Autor: chimneytop

Aufgabe
Gegeben seien n unabhängig normalverteilte (mit Parametern [mm] \mu [/mm] und [mm] \sigma) [/mm] ZVen [mm] X_i [/mm] mit Erwartungswert [mm] \mu [/mm] (bekannt) und unbekannter Varianz [mm] \sigma^2. [/mm]

Sei [mm] S_n^2=\bruch{1}{n-1}\summe_{i=1}^{n}(X_i-\overline{X_n})^2 [/mm] die Stichprobenvarianz.

Zu zeigen ist (u.a.), dass [mm] Var(S_n^2)=\bruch{2\sigma^4}{n-1} [/mm] für alle n [mm] \geq [/mm] 2. Weiters ist zu zeigen (bzw. folgt sofort), dass [mm] \limes_{n\rightarrow\infty}Var(S_n^2)=0 [/mm] und daher die Schätzfolge [mm] (S_n^2)_n\in\IN [/mm] konsistent ist.

Ich hätte mir überlegt das eventuell mittels Induktion zu zeigen, hab aber schon beim Induktionsanfang so meine Probleme, weil ich für n=2 nicht auf das richtige Ergebnis komme.

Frage: Ist der Ansatz mittels Induktion sinnvoll oder sieht jemand einen besseren Weg.

        
Bezug
Stichprobenvarianz bei N-Vert.: Idee
Status: (Antwort) fertig Status 
Datum: 13:11 Do 29.11.2007
Autor: generation...x

Das sollte auch direkt gehen: Zeig erstmal, dass [mm]E(S_n^2) = \sigma^2[/mm] und setz alles in die Formel für die Varianz ([mm]Var(X) = E(X - E(X))^2[/mm]) ein. Beim Vereinfachen sollten alle µ wegfallen.

Bezug
                
Bezug
Stichprobenvarianz bei N-Vert.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Mo 03.12.2007
Autor: chimneytop

Ok, danke für den Hinweis.

Ich bin dem ganzen jetzt schon näher gekommen.

[mm] E[S_n^2]=\sigma^2 [/mm] hab ich gezeigt, in weiterer Folge auch
[mm] E[[S_n^2]^2]=\bruch{3\sigma^4}{n-1}. [/mm]

Jetzt wäre die Varianz aber [mm] \bruch{3\sigma^4}{n-1}-\sigma^4. [/mm] Irgendwo muss also noch ein Fehler versteckt sein. (Ich sollte ja insgesamt auf [mm] \bruch{2\sigma^4}{n-1} [/mm] kommen.)

Andere Frage: Wenn ich weiß, dass [mm] E[\overline{X_n}]=\lambda, [/mm] darf ich dann
[mm] E[\bruch{1}{n-1}\summe_{i=1}^{n}(X_i-\overline{X_n})^2] [/mm] durch [mm] E[\bruch{1}{n-1}\summe_{i=1}^{n}(X_i-\mu)^2] [/mm] ersetzen?

Danke!

Bezug
                        
Bezug
Stichprobenvarianz bei N-Vert.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Mo 03.12.2007
Autor: luis52


> Jetzt wäre die Varianz aber
> [mm]\bruch{3\sigma^4}{n-1}-\sigma^4.[/mm] Irgendwo muss also noch
> ein Fehler versteckt sein. (Ich sollte ja insgesamt auf
> [mm]\bruch{2\sigma^4}{n-1}[/mm] kommen.)


Ich glaube, ich habe dir schon einmal

Introduction to the Theory of Statistics (McGraw-Hill Series in
Probability and Statistics) (Hardcover) by Alexander McFarlane Mood
(Author), Franklin A. Graybill (Author), Duane C. Boes

empfohlen. Schau dort mal auf Seite 229-230.

>  
> Andere Frage: Wenn ich weiß, dass
> [mm]E[\overline{X_n}]=\lambda,[/mm] darf ich dann
>  [mm]E[\bruch{1}{n-1}\summe_{i=1}^{n}(X_i-\overline{X_n})^2][/mm]
> durch [mm]E[\bruch{1}{n-1}\summe_{i=1}^{n}(X_i-\mu)^2][/mm]
> ersetzen?


Hae? [mm] $\lambda$? $\mu$? [/mm] Bin verwirrt? Ausserdem ist das ein neues Fass...

lg Luis

Bezug
                                
Bezug
Stichprobenvarianz bei N-Vert.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:41 Di 04.12.2007
Autor: chimneytop

War gestern auf der Uni-Bibliothek. Das Buch is bis nächste Woche ausgeborgt. Könntest du mir evntuell die Seiten scannen oder einen kurzen Lösungsweg posten. Wäre toll, da ich es bis Donnerstag bräuchte und das Gefühl hab schon recht nah an der Lösung zu sein.

Danke!

Bezug
                                        
Bezug
Stichprobenvarianz bei N-Vert.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Di 04.12.2007
Autor: luis52

Tut mit Leid, habe mich geirrt. Es wird nur
[mm] $\operatorname{E}[S_n^2]=\sigma^2$ [/mm] gezeigt. Der Rest soll in einer
Aufgabe bewiesen werden:

Folgende Tipps werden gegeben:


[mm] $\sum(X_i-\bar X)^2=\sum(X_i-\mu)^2-n(\bar X-\mu)^2$ [/mm]
[mm] $\bar X-\mu=\frac{1}{n}\sum(X_i-\mu)$ [/mm]
[mm] $S_n^2=\sum_{i=1}^n\sum_{j=1}^n(X_i-X_j)^2/(2n(n-1))$ [/mm]

Diese zu beweisen ist nicht schwer, aber wie man damit die eigentliche Behauptung zeigt,
ist mir noch unklar. Vielleicht hilft's dir ja auf die Spruenge.

Gruesse Luis              

Bezug
        
Bezug
Stichprobenvarianz bei N-Vert.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Di 04.12.2007
Autor: luis52

Jetzt habe ich doch noch einen Beweis hinbekommen. Hier ist er in groben
Zuegen, jedoch muss ich einiges als bekannt voraussetzen

1) Sind [mm] $Z_1,...,Z_n$ [/mm] unabhaengige Zufallsvariablen mit [mm] $Z_i\sim [/mm] N(0,1)$,
so ist [mm] $W=\sum_{i=1}^nZ_i^2\sim\chi^2(n)$. [/mm] Ferner ist
[mm] $\operatorname{E}[W]=n$ [/mm] und [mm] $\operatorname{Var}[W]=2n$. [/mm]

2) Das vierte zentrale Moment der Normalverteilung mit [mm] $\operatorname{E}[X]=\mu$ [/mm] und [mm] $\operatorname{Var}[X]=\sigma^2$ [/mm]
ist gegeben durch [mm] $\operatorname{E}[(X-\mu)^4]=3\sigma^4$. [/mm]

Ich benutze die Gleichungen [mm] $(n-1)S_n^2=U-V$ [/mm] mit
[mm] $U=\sum_{i=1}^n(X_i-\mu)^2$ [/mm] und [mm] $V=n(\bar X-\mu)^2=\sum_i\sum_j(X_i-\mu)(X_j-\mu)/n$ [/mm]
wegen [mm] $\bar X-\mu=\sum(X_i-\mu)/n$. [/mm]

Bekanntlich gilt

[mm] $\operatorname{Var}[U-V]=\operatorname{Var}[U]+\operatorname{Var}[V]-2\operatorname{Cov}[U,V]$. [/mm]

Wir erhalten

[mm] $U=\sigma^2\sum_{i=1}^n((X_i-\mu)/\sigma)^2\sim \sigma^2\chi^2(n)$, [/mm] so dass [mm] $\operatorname{E}[U]=n\sigma^2$ [/mm] und [mm] $\operatorname{Var}[U]=2n\sigma^4=:a$. [/mm]

[mm] $V=n(\sigma^2/n)((\bar X-\mu)/(\sigma/\sqrt{n}))^2\sim\sigma^2\chi^2(1)$, [/mm] so dass [mm] $\operatorname{E}[V]=\sigma^2$ [/mm] und [mm] $\operatorname{Var}[V]=2\sigma^4=:b$. [/mm]

Fuer die Berechnung der Kovarianz nutzen wir aus [mm] $\operatorname{Cov}[U,V]=\operatorname{E}[UV]-\operatorname{E}[U]\operatorname{E}[V]$. [/mm]

Wir erhalten

[mm] $\operatorname{E}[UV]= \operatorname{E}[\sum_{k=1}^n(X_k-\mu)^2\sum_i\sum_j(X_i-\mu)(X_j-\mu)/n] =\frac{1}{n}\sum_{k=1}^n\sum_{i=1}^n\sum_{j=1}^n\operatorname{E}[(X_k-\mu)^2(X_i-\mu)(X_j-\mu)]$ [/mm]
Die Summanden verschwinden nicht unter zwei Bedingungen:

$k=i=j$: Diese $n$ Summanden liefern die Summe [mm] $3\sigma^4=:c$ [/mm]
$i=j$ und [mm] $i\ne [/mm] k$: Diese [mm] $n^2-n$ [/mm] Summanden liefern [mm] $(1/n)(n^2-n)\sigma^4=(n-1)\sigma^4=:d$. [/mm]

Schliesslich ist noch [mm] $\operatorname{E}[U]\operatorname{E}[V]=n\sigma^4=:e$. [/mm]

Fassen wir die Ergebnisse zusammen:

[mm] $(n-1)^2\operatorname{Var}[S_n^2]=\operatorname{Var}[U-V]=a+b-2(c+d-e)=2(n-1)\sigma^4$ [/mm]

lg Luis
                                                    

Bezug
                
Bezug
Stichprobenvarianz bei N-Vert.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:15 Mi 05.12.2007
Autor: chimneytop

Danke für diese sehr schöne Lösung. Hab sie im Wesentlichen nachvollziehen können, an einer Stelle häng ich aber noch:

> [mm]\operatorname{E}[UV]= \operatorname{E}[\sum_{k=1}^n(X_k-\mu)^2\sum_i\sum_j(X_i-\mu)(X_j-\mu)/n] =\frac{1}{n}\sum_{k=1}^n\sum_{i=1}^n\sum_{j=1}^n\operatorname{E}[(X_k-\mu)^2(X_i-\mu)(X_j-\mu)][/mm]
>  
> Die Summanden verschwinden nicht unter zwei Bedingungen:
>  
> [mm]k=i=j[/mm]: Diese [mm]n[/mm] Summanden liefern die Summe [mm]3\sigma^4=:c[/mm]
>  [mm]i=j[/mm] und [mm]i\ne k[/mm]: Diese [mm]n^2-n[/mm] Summanden liefern
> [mm](1/n)(n^2-n)\sigma^4=(n-1)\sigma^4=:d[/mm].
>  
> Schliesslich ist noch
> [mm]\operatorname{E}[U]\operatorname{E}[V]=n\sigma^4=:e[/mm].

Wieso verschwinden die Summanden genau dann nicht und woher kommt der Wert für den zweiten Fall?

Danke!

Ansonsten ists klar! Vielen Dank für die Mühe!

P.S.: Hab die zwei Seiten aus dem Buch organisieren können. [mm] E[S_n^2]=\sigma^2 [/mm] wird hier in der Tat sehr schön gezeigt.

Bezug
                        
Bezug
Stichprobenvarianz bei N-Vert.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Mi 05.12.2007
Autor: luis52


> > Die Summanden verschwinden nicht unter zwei Bedingungen:
>  >  
> > [mm]k=i=j[/mm]: Diese [mm]n[/mm] Summanden liefern die Summe [mm]3\sigma^4=:c[/mm]
>  >  [mm]i=j[/mm] und [mm]i\ne k[/mm]: Diese [mm]n^2-n[/mm] Summanden liefern
> > [mm](1/n)(n^2-n)\sigma^4=(n-1)\sigma^4=:d[/mm].
>  >  
> > Schliesslich ist noch
> > [mm]\operatorname{E}[U]\operatorname{E}[V]=n\sigma^4=:e[/mm].
>  Wieso verschwinden die Summanden genau dann nicht

Betrachte beispielsweise

[mm] $\operatorname{E}[(X_k-\mu)^2(X_i-\mu)(X_j-\mu)] [/mm] $.

fuer $i=k$ und [mm] $i\ne [/mm] j$. Wegen der Unabhaengigkeit ist dann

[mm] $\operatorname{E}[(X_k-\mu)^3(X_j-\mu)]=\operatorname{E}[(X_k-\mu)^3]\operatorname{E}[(X_j-\mu)]=0 [/mm] $.

lg Luis


Bezug
                                
Bezug
Stichprobenvarianz bei N-Vert.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Mi 05.12.2007
Autor: chimneytop

Aahhh!!!

Alles klar.

Vielen Dank nochmal.

Schön, wenn man so ein Bsp.endlich erfolgreich abschließen kann!

Bezug
                
Bezug
Stichprobenvarianz bei N-Vert.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Mi 05.12.2007
Autor: chimneytop

Hab grad noch eine andere (weit "billigere") Lösung gefunden. Setzt man etwas mehr voraus (siehe http://de.wikipedia.org/wiki/Normalverteilung#Beziehung_zur_Chi-Quadrat-Verteilung, zweite Bemerkung) bekommt man die Aussage direkt:

[mm] Var[S_n^2]=\bruch{\sigma^4}{(n-1)^2}Var[\chi^2(n-1)]=\bruch{2\sigma^4}{n-1}. [/mm]

Natürlich weit nicht so interessant und aufregend zu rechnen.

Bezug
                        
Bezug
Stichprobenvarianz bei N-Vert.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 Mi 05.12.2007
Autor: luis52


> Hab grad noch eine andere (weit "billigere") Lösung
> gefunden. Setzt man etwas mehr voraus (siehe
> http://de.wikipedia.org/wiki/Normalverteilung#Beziehung_zur_Chi-Quadrat-Verteilung,
> zweite Bemerkung) bekommt man die Aussage direkt:
>  
> [mm]Var[S_n^2]=\bruch{\sigma^4}{(n-1)^2}Var[\chi^2(n-1)]=\bruch{2\sigma^4}{n-1}.[/mm]
>  

Auch huebsch. Warum bin ich nicht darauf gekommen :-( ;-)

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]