matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeitsverhalten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Stetigkeitsverhalten
Stetigkeitsverhalten < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeitsverhalten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 13.04.2010
Autor: fiktiv

Aufgabe
Man bestimme alle [mm]x \in \IR[/mm], für die folgende Funktion stetig ist.

[mm]f(x)=\begin{cases} 1, & \mbox{für } x\le0} \\ ln(x), & \mbox{für } x >0 \end{cases}[/mm]

Hallo!

Zu obig angeführter Aufgabe bin ich mir ob der Lösung ziemlich uneins.
Wie die Funktion(en) aussehen, habe ich mir bereits illustriert. Sie ist also definitiv nicht stetig, wenn man sie als gesamtes nimmt, dafür aber, wenn man sie allein in den Grenzen ([mm]-\infty[/mm], x[mm]\le[/mm]0) und ([mm]x>0,\infty[/mm]) betrachtet.
Aber wie gibt man das jetzt im Definitionsbereich an?
Denn als Ganzes hat die Funktion bei 0 ja definitiv einen Sprung.

Vorschlag: DB(f):= [mm]x \in \IR \backslash \{0\}[/mm]
Doch dann würde ich ja (so wie ich das lese) künstlich eine Lücke herbeiführen, die ja gegen die darzustellende Stetigkeit wirkt.. ?!

        
Bezug
Stetigkeitsverhalten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Di 13.04.2010
Autor: steppenhahn

Hallo!

> Man bestimme alle [mm]x \in \IR[/mm], für die folgende Funktion
> stetig ist.
>  
> [mm]f(x)=\begin{cases} 1, & \mbox{für } x\le0} \\ ln(x), & \mbox{für } x >0 \end{cases}[/mm]
>  
> Hallo!
>  
> Zu obig angeführter Aufgabe bin ich mir ob der Lösung
> ziemlich uneins.
>  Wie die Funktion(en) aussehen, habe ich mir bereits
> illustriert. Sie ist also definitiv nicht stetig, wenn man
> sie als gesamtes nimmt, dafür aber, wenn man sie allein in
> den Grenzen ([mm]-\infty[/mm], x[mm]\le[/mm]0) und ([mm]x>0,\infty[/mm]) betrachtet.

>  Denn als Ganzes hat die Funktion bei 0 ja definitiv einen
> Sprung.

Genau.

> Vorschlag: DB(f):= [mm]x \in \IR \backslash \{0\}[/mm]

Ich verstehe nicht, warum du den Definitionsbereich der Funktion ändern willst.
Es geht doch nur darum, die Menge aller x anzugeben, für die die Funktion stetig ist.
Das ist in diesem Fall, deinem richtigen Vorschlag folgend:

$M = [mm] \IR\textbackslash\{0\}$. [/mm]

Mehr gibt es zu der Aufgabe nicht zu sagen.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]