matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungStetigkeit und Diffbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Stetigkeit und Diffbarkeit
Stetigkeit und Diffbarkeit < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit und Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Sa 03.01.2009
Autor: Nikecounter

Aufgabe
Überprüfen auf Stetigkeit und Differenzierbarkeit!

Also einfachere Aufgaben wie z.B.
-x²-x für x<0
x²-x für  x>0 konnt ich Problemlos lösen einfach lim zu 0+ und 0-

wie muss ich bei solchen Aufgaben rangehen?

2                für x< -2
-x²-4x-2     für -2 kleiner-gleich x kleiner-gleich -1
x²               für x> -1

also muss ich wohl bei 1. lim geht zu -2- , aber ist ja sowieso 2
2. weis ich nicht wirklich!
3. lim geht zu -1+ für x²

???

Danke

        
Bezug
Stetigkeit und Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Sa 03.01.2009
Autor: Merle23

1) Ich kann deine letzten drei Sätze nicht entschlüsseln ... ist aber auch egal.

2) Mach es doch genauso wie bei deiner "einfacheren" Aufgabe. Da haste doch den links- und rechtsseitigen Grenzwert an dem Punkt x = 0 betrachtet. Und genau das machste auch in der "schwereren" Aufgabe, nur zweimal. Einmal den links- und rechtsseitigen Grenzwert an dem Punkt x = -2 und ein ander Mal den links- und rechtsseitigen Grenzwert an dem Punkt x = -1.

Bezug
                
Bezug
Stetigkeit und Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Sa 03.01.2009
Autor: Nikecounter

Und dann muss jeweils die gleiche Zahl rauskommen, aber nicht 4 mal das selbe oda?

Bezug
                        
Bezug
Stetigkeit und Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Sa 03.01.2009
Autor: ChopSuey

Hallo nochmal,

> Und dann muss jeweils die gleiche Zahl rauskommen, aber
> nicht 4 mal das selbe oda?

Nein, es muss nicht 4 mal der selbe Wert sein.

Du untersuchst beide "Grenzen" unabhängig voneinander, somit ist es möglich/wahrscheinlich, dass du 2 mal verschiedene Werte ermittelst, obwohl in beiden Fällen eine Stetigkeit/Differenzierbarkeit nachgewiesen wurde. Es ist durchaus möglich, dass nur eine Stelle stetig ist, oder auch garkeine.

Viele Grüße
ChopSuey


Bezug
        
Bezug
Stetigkeit und Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Sa 03.01.2009
Autor: ChopSuey

Hallo Nikecounter,

> Überprüfen auf Stetigkeit und Differenzierbarkeit!
>  Also einfachere Aufgaben wie z.B.
>  -x²-x für x<0
>  x²-x für  x>0 konnt ich Problemlos lösen einfach lim zu 0+
> und 0-
>  
> wie muss ich bei solchen Aufgaben rangehen?
>  
> 2                für x< -2
>  -x²-4x-2     für -2 kleiner-gleich x kleiner-gleich -1
>  x²               für x> -1

Wenn ich das richtig sehe, sieht deine abschnittsweise definierte Funktion wie folgt aus:

$\ f(x) = [mm] \begin{cases} 2 & \mbox{für } x < 2 \\ -x²-4x-2 & \mbox{für } -2 \le x \le -1 \\ x² & \mbox{für} x> -1 \end{cases} [/mm] $

In diesem Fall gibt es 2 "Stellen", die auf Stetigkeit/Differenzierbarkeit zu untersuchen sind.

Du untersuchst also Funktion 1 & 2 auf Stetigkeit/Differenzierbarkeit und Funktion 2 & 3 ebenso. Du musst das Ganze also 2 mal untersuchen.

Es wäre ja durchaus möglich, dass dein Graph an einer Stelle Stetig ist, an einer anderen aber nicht. Das selbe gilt natürlich für die Differenzierbarkeit.

Beachte dass aus einer Stetigkeit die Differenzierbarkeit folgt. So sparst du dir unnötige Arbeit.

Viel erfolg!
Gruß
ChopSuey

>  
> also muss ich wohl bei 1. lim geht zu -2- , aber ist ja
> sowieso 2
>  2. weis ich nicht wirklich!
>  3. lim geht zu -1+ für x²
>  
> ???
>  
> Danke


Bezug
                
Bezug
Stetigkeit und Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Sa 03.01.2009
Autor: Nikecounter

Ich hab jetzt noch den folgenden, für mich nicht leicht durchschaubaren Fall.

2x           für x<0
-x²+2x    für 0<gleich x <1
0             für x=1
-x²+2x    für x> 1

Also müsst ich quasi 0 untersuchen lim x zu 0- von 2x
und lim x zu 0+ von -x²+2x

und bei 1 lim x zu 1+ von -x² +2x
und lim x zu 1- von -x²+x
und bei x=1 heißt das bei den den anderen 2en 0 rauskommen müsste damit es stetig ist...???

Danke

Bezug
                        
Bezug
Stetigkeit und Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Sa 03.01.2009
Autor: ChopSuey

Hallo

> Ich hab jetzt noch den folgenden, für mich nicht leicht
> durchschaubaren Fall.
>  
> 2x           für x<0
>  -x²+2x    für 0<gleich x <1
>  0             für x=1
>  -x²+2x    für x> 1

>  
> Also müsst ich quasi 0 untersuchen lim x zu 0- von 2x
>  und lim x zu 0+ von -x²+2x
>  
> und bei 1 lim x zu 1+ von -x² +2x
>  und lim x zu 1- von -x²+x
>  und bei x=1 heißt das bei den den anderen 2en 0 rauskommen
> müsste damit es stetig ist...???
>  
> Danke

Mit dem Formeleditor wäre es wesentlich einfacher deiner Fragestellung zu folgen ;-)
Wäre gut, wenn du den nutzt.

In diesem Fall hast du eben 3 Nahtstellen, die untersucht werden müssen.

Welche Nahtstellen gibt es denn? Wenn du das herausgefunden hast, überleg dir, wie du die Stetigkeit/Differenzierbarkeit für jede dieser Nahtstellen schrittweise nachweisen kannst.

Jetzt klarer?
Gruß
ChopSuey


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]