matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetigkeit/partielle Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit/partielle Ableitung
Stetigkeit/partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit/partielle Ableitung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:20 So 12.05.2013
Autor: lol13

Aufgabe
In welchen Punkten des [mm] \IR^2 [/mm] ist die Funktion
[mm] f(x,y)=\begin{cases} y-x, & \mbox{für } y\ge x^2 \\ 0, & \mbox{für } y stetig, in welchen unstetig?
Existieren die partiellen Ableitungen [mm] f_{x}(0,0) [/mm] und [mm] f_{y}(0,0)? [/mm]

Um überhaupt die Stetigkeit überprüfen zu können, habe ich die partiellen Ableitungen gebildet:
[mm] f_{x}(x,y)=\begin{cases} -1, & \mbox{für } y\ge x^2 \\ 0, & \mbox{für } y
[mm] f_{y}(x,y)=\begin{cases} 1, & \mbox{für } y\ge x^2 \\ 0, & \mbox{für } y
Stetigkeit bedeutet ja, dass Grenzwert und Funkionswert in einem Punkt überienstimmen, aber wie funktioniert das bei mehrern Variablen?

Für die partiellen Ableitungen erhalte ich, da x=0=y:
[mm] f_{x}(0,0)=-1 [/mm] und [mm] f_{y}(0,0)=1 [/mm]

Danke für eure Hilfe :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Stetigkeit/partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 So 12.05.2013
Autor: schachuzipus

Hallo lol13,

wozu gibt's die Forensuche?

Hier https://www.vorhilfe.de/read?t=965927 ist dieselbe Aufgabe schon besprochen. Vllt. kannst du da alles saugen oder dich dort einklinken.

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]