matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStetigkeit mit Nullfolgen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Stetigkeit mit Nullfolgen
Stetigkeit mit Nullfolgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit mit Nullfolgen: Frage
Status: (Frage) beantwortet Status 
Datum: 19:55 Di 26.04.2005
Autor: ilse

Hallo,

Ich stitz grad vor meinem Matheblatt und bin mir nicht ganz sicher ob ich die richtige Lösung für folgende Aufgabe habe:

[mm] f(x,y)=\begin{cases} xy \bruch{ x^{2}-y^{2}}{ x^{2}+y^{2}}, & \mbox(x,y) \not=(0,0) \\ 0, & \mbox(x,y) = (0,0) \end{cases} [/mm]

nun soll ich Stetigkeit in (0,0) zeigen oder wiederlegen, und zwar mit Nullfolgen. Nun hab ich schon einige Folgen ausprobiert und bin dann zu dem Entschluss gekommen, dass f in (0,0) stetig sein müsste da ich aufgrund der höheren Potenz im Zähler der Funktion keine geeigneten Nullfolgen finden kann, die Stetigkeit wiederlegen würden.

Liege ich mit meiner Vermutung richtig? wäre nett wenn mir jemand weiterhelfen könnte.

Christine



        
Bezug
Stetigkeit mit Nullfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Di 26.04.2005
Autor: moudi


> Hallo,

Hallo Christine

>  
> Ich stitz grad vor meinem Matheblatt und bin mir nicht ganz
> sicher ob ich die richtige Lösung für folgende Aufgabe
> habe:
>  
> [mm]f(x,y)=\begin{cases} xy \bruch{ x^{2}-y^{2}}{ x^{2}+y^{2}}, & \mbox(x,y) \not=(0,0) \\ 0, & \mbox(x,y) = (0,0) \end{cases}[/mm]
>  
> nun soll ich Stetigkeit in (0,0) zeigen oder wiederlegen,
> und zwar mit Nullfolgen. Nun hab ich schon einige Folgen
> ausprobiert und bin dann zu dem Entschluss gekommen, dass f
> in (0,0) stetig sein müsste da ich aufgrund der höheren
> Potenz im Zähler der Funktion keine geeigneten Nullfolgen
> finden kann, die Stetigkeit wiederlegen würden.
>  
> Liege ich mit meiner Vermutung richtig? wäre nett wenn mir
> jemand weiterhelfen könnte.

Ja die Funktion ist stetig in (0,0) und deine Argumentation ist richtig.
Formal würde ich so argumentieren. Wenn (x,y) in der Nähe von (0,0) liegt, z.B. hat der Punkt den Abstand [mm] $\epsilon$ [/mm] von (0,0), dann gilt also [mm] $x^2+y^2=\epsilon^2$ [/mm] und man kann die grössen [mm] $x^2-y^2$ [/mm] $x$ und $y$ abschätzen.
Es gelten [mm] $|x^2-y^2|\leq x^2+y^2=\epsilon^2$ [/mm] und [mm] $|x|\leq \sqrt{x^2+y^2}=\epsilon$ [/mm] und analog [mm] $|y|\leq\epsilon$. [/mm]
Damit ergibt sich [mm] $|f(x,y)|\leq\epsilon^2\frac{\epsilon^2}{\epsilon^2}$ [/mm] und das geht gegen 0, wenn [mm] $\epsilon$ [/mm] gegen 0 geht.

mfG Moudi

>  
> Christine
>  
>  

Bezug
                
Bezug
Stetigkeit mit Nullfolgen: vielen dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Mi 27.04.2005
Autor: ilse

alles klar!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]