matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStetigkeit im R²
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Stetigkeit im R²
Stetigkeit im R² < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit im R²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Sa 10.07.2004
Autor: Micha

Hallo!
der Beweis sollte ziemlich banal sein, aber ich bekomme ihn nich hin. Gegeben ist eine Funktion
[mm] µ : \IR^2 \rightarrow \IR , (x_1 , x_2) \to x_1 x_2 [/mm]

Zu zeigen ist, dass µ stetig ist. Für
[mm] \alpha : \IR^2 \rightarrow \IR , (x_1, x_2 ) \to x_1 + x_2 [/mm] wurde der Beweis vorgemacht. Ein Einzeiler:

[mm] d(\alpha (x_k ), \alpha (p)) = \left| (x_{k1} + x_{k2}) - (p_1 + p_2) \right| \le \left| x_{k1} - p_1 \right| + \left| x_{k2} + p_2\right|[/mm]
und dann folgert er: [mm] \lim \alpha (x_k) = \alpha (p) [/mm] und damit die Komponenten gegen null, damit die rechte Seite = 0 und damit alpha stetig. Der beweis ist für mich auch einleuchtend, aber bei der Multiplikation komm ich nich weiter :-(

Vielen Dank schonmal, euer Micha

PS: Ich liebe solche Beweise in Scripten, wo einem eigentlich alles klar sein solte... *Ironie ON*

        
Bezug
Stetigkeit im R²: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Sa 10.07.2004
Autor: andreas

hi Micha

das ist so ein standardtrick, den man halt einmal gesehn haben muss:
sei also [m] x^k = (x_1^k, x_2^k) \stackrel{k \to \infty}{\longrightarrow} x = (x_1, x_2) [/m] eine gegen x kovergente folge, dann gilt:

[m] | \alpha(x) - \alpha(x^k) | = |x_1 x_2 - x_1^k x_2^k| =| x_1 x_2 - x_1^k x_2 + x_1^k x_2 - x_1^k x_2^k | = | x_2( x_1 - x_1^k) + x_1^k (x_2 - x_2^k) | \leq | x_2( x_1 - x_1^k)| + | x_1^k (x_2 - x_2^k) | = |x_2|| x_1 - x_1^k| + |x_1^k||x_2 - x_2^k| [/m]

der letzte term geht aber für k gegen unendlich gegen null (beim ersten summanden ist das klar - beim zweiten kannst du dir das mal kurz überlegen. kleiner tipp: beschränktheit konvergenter folgen). daraus folgt dann aber auch die stetigkeit von alpha!

probiere mal, ob du alleine weiterkommst und den beweis vielleicht noch etwas formaler führen kannst, sonst melde dich einfach nochmal!

gruß andreas

Bezug
                
Bezug
Stetigkeit im R²: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Sa 10.07.2004
Autor: Micha

hmm, soweit war ich ja, nur die Argumentation am Ende hat mir noch gefehlt. Fazit: Formal kann ichs ja, nur ich trau mich irgendwie nich, sowas daraus zu folgern..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]