Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:24 Sa 07.07.2012 | Autor: | Lukas147 |
Aufgabe | Wo ist die Funktion [mm] f:\IR \to \IR [/mm] : [mm] f(x)=\begin{cases} x*sin(1/x) für x\not= 0 \\1 für x=0 \end{cases} [/mm]
stetig. Lässt sie sich auf ganz [mm] \IR [/mm] stetig machen indem man einen Wert abändert? |
Hallo,
die folgende Aufgabe sei gegeben . Dazu habe ich ein paar Verständnisfragen ,nur um sicher zu gehen ob ich das auch richtig verstanden habe ...
Zur Stetigkeit: Hier muss man ja zeigen dass 1: x*sin(1/x) für x [mm] \not= [/mm] 0 stetig ist . Da es sich ja hier um stetigkeit nicht nur in einem Punkt [mm] x_0 [/mm] handelt muss man ja gleichmäßige stetigkeit zeigen oder?(da die stetigkeit ja nicht von einem Punkt [mm] x_0 [/mm] abhängen darf ).
2: Ob der passende Wert 1 ist kann man ja schnell überprüfen wenn man den Grenzwert gegen 0+ und 0- laufen lässt und falls das 1 ist dann stimmt es , falls nicht und beide Grenzwerte laufen gegen einen bestimmten (gleichen ) Punkt könnte man ja diesen übernehmen und damit wäre die Aufgabe gemacht...
Wäre das bis jetzt die richtige herangehensweise an die Aufgabe ?
lg Lukas
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:18 Sa 07.07.2012 | Autor: | Teufel |
Hi!
1.) Also, es gilt, dass f für [mm] x\not=0 [/mm] stetig ist. Wenn du das zeigen willst, musst du aber nichts mit gleichmäßiger Stetigkeit machen. Es darf also von [mm] x_0 [/mm] abhängen. Aber ja nach dem, welche Sätze Sätze ihr hattet, musst du dich nicht mit dem Epsilon-Delta-Kriterium rumschlagen. Weißt du etwas über Produkte und Kompositionen/Verkettungen stetiger Abbildungen?
2.) Genau.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:30 Sa 07.07.2012 | Autor: | Lukas147 |
Hallo,
Ja dazu hatten wie ein paar Sätze :
Die Komposition zweier stetiger Abbildungen ist stetig.
Das Produkt stetiger Abbildungen ist stetig.
In diesem fall gillt ja , dass x , sin(x) und 1/x stetig sind , damit ist auch die verkettung mit Multiplikation stetig.
Nochmal zu gleichmäßiger stetigkeit. Kann es hier nicht sein dass z.B. dann eine Funktion in [mm] x_0 [/mm] stetig ist, in einem anderen Punkt aber nicht? Meine bisherige Annahme war immer , dass gleichmäßige stetigkeit den kompletten Raum abdeckt und die "normale" stetigkeit nur einzelne Punkte...
Zu Punkt 2. Meine Vermutung : das ganze geht sowohl von links als auch von rechts gegen 0. Habe aber gerade noch keinen aussagekräftigen Beweis parat...bleibe aber dran :) .
lg Lukas
|
|
|
|
|
Hiho,
> Ja dazu hatten wie ein paar Sätze :
> Die Komposition zweier stetiger Abbildungen ist stetig.
> Das Produkt stetiger Abbildungen ist stetig.
> In diesem fall gillt ja , dass x , sin(x) und 1/x stetig
> sind , damit ist auch die verkettung mit Multiplikation stetig.
Auf dem Definitionsbereich [mm] $x\not= [/mm] 0$! Aber ansonsten stimmt alles.
> Nochmal zu gleichmäßiger stetigkeit. Kann es hier nicht
> sein dass z.B. dann eine Funktion in [mm]x_0[/mm] stetig ist, in einem anderen Punkt aber nicht?
Nein. Eine Funktion heißt stetig, wenn sie in jedem Punkt des Definitionsbereichs stetig ist.
> Meine bisherige Annahme war immer , dass gleichmäßige stetigkeit den kompletten Raum abdeckt und die "normale" stetigkeit nur einzelne Punkte...
Nein.
Nehmen wir mal das Epsilon-Delta-Kriterium. Da besteht die Aufgabe ja darin, zu jedem gegebenem [mm] \varepsilon [/mm] ein [mm] \delta [/mm] zu finden.
Nun kommt der Clou:
Für Stetigkeit darf deine Wahl von [mm] \delta [/mm] sowohl von [mm] \varepsilon [/mm] als auch deinem untersuchten Punkt [mm] x_0 [/mm] abhängen, ist also so eine Art "Funktion" [mm] $\delta(\varepsilon,x_0)$
[/mm]
Bei Gleichmäßiger Stetigkeit darf das [mm] \delta [/mm] nur von [mm] \varepsilon [/mm] und nicht von deiner Stelle [mm] x_0 [/mm] abhängen. Dein Delta ist also nur ein [mm] $\delta(\varepsilon)$
[/mm]
Es ist nun folgendes klar:
Ist eine Funktion gleichmäßig stetig, so finde ich ein [mm] \delta [/mm] und damit ist sie auf jedenfall auch stetig (ich wähle einfach [mm] $\delta(\varepsilon,x_0) [/mm] = [mm] \delta(\varepsilon)$)
[/mm]
Die Umkehrung gilt aber im Allgemeinen nicht, weil es Funktionen gibt, wo die Stelle [mm] x_0 [/mm] in das [mm] \delta [/mm] immer mit einfließt. Man bekommt es also nicht unabhängig davon.
> Zu Punkt 2. Meine Vermutung : das ganze geht sowohl von
> links als auch von rechts gegen 0. Habe aber gerade noch
> keinen aussagekräftigen Beweis parat...bleibe aber dran :)
Tip: Betrachte mal den Betrach, schätze dann einmal ab und es steht da
MFG,
Gono.
|
|
|
|