Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Finde die Stetigkeits- und Unstetigkeitsstellen folgender Funktionen:
(i) f: [mm] \IR \to \IR, f(x)=\begin{cases} x^{2}, & \mbox{für } x \in \IQ \\ 0, & \mbox{für } x \in \IR\setminus\IQ \end{cases} [/mm] |
Hallo, wir sind jetzt bei Stetigkeit angekommen. Neues Thema, neue Unsicherheiten...
Es gibt ja verschiedene Definitionen die man anwenden kann, ich habe es folgendermaßen gemacht:
stetig in [mm] x_0 [/mm] = 0, weil:
Sei [mm] \varepsilon [/mm] > 0. Wähle [mm] \delta [/mm] = [mm] \wurzel{\varepsilon}, [/mm] dann für x [mm] \in (x_0 [/mm] - [mm] \delta, x_0 [/mm] + [mm] \delta) [/mm] ist |x - [mm] x_0| [/mm] = |x - 0| = |x| < [mm] \delta: [/mm] |f(x) - [mm] f(x_0)| [/mm] = |f(x)| [mm] =\begin{cases} x^{2}, & \mbox{für } x \in \IQ \\ 0, & \mbox{für } x \in \IR\setminus\IQ \end{cases} [/mm] < [mm] \delta^{2} [/mm] = [mm] \varepsilon
[/mm]
unstetig in [mm] x_0 \not= [/mm] 0, weil:
Sei [mm] \varepsilon [/mm] > 0. [mm] \delta [/mm] beliebig. Dann gibt es [mm] x_1 \in (x_0 [/mm] - [mm] \delta, x_0 [/mm] + [mm] \delta) \cap \IR\setminus\IQ [/mm] mit [mm] f(x_1) [/mm] = 0 und da [mm] \IR\setminus\IQ [/mm] dicht in [mm] \IR [/mm] gibt es [mm] x_2 \in (x_0-\delta, x_0 [/mm] + [mm] \delta)\cap\IR\setminus\IQ [/mm] mit [mm] f(x_2) [/mm] = 0 s.d. [mm] |x_1 [/mm] - [mm] x_2| [/mm] = 0 < [mm] \delta [/mm] aber [mm] |f(x_1) [/mm] - [mm] f(x_2)| [/mm] = 0 [mm] \not\in (f(x_0) [/mm] + 1, [mm] f(x_0) [/mm] - 1)
Ich denke da stimmt aber was nicht. Denn es kann ja durchaus sein, dass [mm] (f(x_0) [/mm] + 1, [mm] f(x_0) [/mm] - 1) gerade so liegt, dass die x-Achse bildlich gesehen durch dieses Intervall läuft... damit wäre die 0 dann ja auch in diesem Intervall. Nur wenn [mm] f(x_0) [/mm] > 1, gilt es. Wie muss ich vorgehen?
Grüße, kullinarisch
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:29 Mi 14.12.2011 | Autor: | fred97 |
> Finde die Stetigkeits- und Unstetigkeitsstellen folgender
> Funktionen:
>
> (i) f: [mm]\IR \to \IR, f(x)=\begin{cases} x^{2}, & \mbox{für } x \in \IQ \\ 0, & \mbox{für } x \in \IR\setminus\IQ \end{cases}[/mm]
>
> Hallo, wir sind jetzt bei Stetigkeit angekommen. Neues
> Thema, neue Unsicherheiten...
>
> Es gibt ja verschiedene Definitionen die man anwenden kann,
> ich habe es folgendermaßen gemacht:
>
> stetig in [mm]x_0[/mm] = 0, weil:
>
> Sei [mm]\varepsilon[/mm] > 0. Wähle [mm]\delta[/mm] = [mm]\wurzel{\varepsilon},[/mm]
> dann für x [mm]\in (x_0[/mm] - [mm]\delta, x_0[/mm] + [mm]\delta)[/mm] ist |x - [mm]x_0|[/mm]
> = |x - 0| = |x| < [mm]\delta:[/mm] |f(x) - [mm]f(x_0)|[/mm] = |f(x)|
> [mm]=\begin{cases} x^{2}, & \mbox{für } x \in \IQ \\ 0, & \mbox{für } x \in \IR\setminus\IQ \end{cases}[/mm]
> < [mm]\delta^{2}[/mm] = [mm]\varepsilon[/mm]
Das ist O.K.
>
> unstetig in [mm]x_0 \not=[/mm] 0, weil:
>
> Sei [mm]\varepsilon[/mm] > 0. [mm]\delta[/mm] beliebig. Dann gibt es [mm]x_1 \in (x_0[/mm]
> - [mm]\delta, x_0[/mm] + [mm]\delta) \cap \IR\setminus\IQ[/mm] mit [mm]f(x_1)[/mm] = 0
> und da [mm]\IR\setminus\IQ[/mm] dicht in [mm]\IR[/mm] gibt es [mm]x_2 \in (x_0-\delta, x_0[/mm]
> + [mm]\delta)\cap\IR\setminus\IQ[/mm] mit [mm]f(x_2)[/mm] = 0 s.d. [mm]|x_1[/mm] -
> [mm]x_2|[/mm] = 0 < [mm]\delta[/mm] aber [mm]|f(x_1)[/mm] - [mm]f(x_2)|[/mm] = 0 [mm]\not\in (f(x_0)[/mm]
> + 1, [mm]f(x_0)[/mm] - 1)
>
> Ich denke da stimmt aber was nicht.
Ja und zwar ganz gewaltig !
> Denn es kann ja
> durchaus sein, dass [mm](f(x_0)[/mm] + 1, [mm]f(x_0)[/mm] - 1) gerade so
> liegt, dass die x-Achse bildlich gesehen durch dieses
> Intervall läuft... damit wäre die 0 dann ja auch in
> diesem Intervall. Nur wenn [mm]f(x_0)[/mm] > 1, gilt es. Wie muss
> ich vorgehen?
Ich denke, dass Du hier mit Folgen besser bedient bist.
Sei also [mm] x_0 \ne [/mm] 0.
Fall 1: [mm] x_0 [/mm] ist rational. Wähle eine Folge irrationaler Zahlen [mm] (a_n) [/mm] mit [mm] a_n \to x_0.
[/mm]
Konvergiert dann [mm] (f(a_n)) [/mm] gegen [mm] f(x_0) [/mm] ?
Fall 2. [mm] x_0 [/mm] ist irrational. Wähle eine Folge irationaler Zahlen [mm] (b_n) [/mm] mit [mm] a_n \to x_0.
[/mm]
Konvergiert dann [mm] (f(b_n)) [/mm] gegen [mm] f(x_0) [/mm] ?
FRED
P.S.: den Fall [mm] x_0 [/mm] =0 kannst Du ganz einfach so erledigen:
es ist $0 [mm] \le [/mm] f(x) [mm] \le x^2$ [/mm] für alle x [mm] \in \IR. [/mm] Damit : f(x) [mm] \to [/mm] 0 =f(0) für x [mm] \to [/mm] 0.
>
> Grüße, kullinarisch
>
|
|
|
|
|
Hallo,
ich fasse nochmal zusammen, ich denke mein voriger Text war etwas chaotisch:
Fall 1: [mm] x_0 [/mm] ist rational. Wähle eine Folge irrationaler Zahlen [mm] (a_n) [/mm] mit [mm] a_n \to x_0.
[/mm]
Konvergiert dann [mm] (f(a_n)) [/mm] gegen [mm] f(x_0) [/mm] ?
Antwort: Nein. [mm] \limes_{n\rightarrow\infty} f(a_n)= [/mm] 0 [mm] \not= f(x_0) [/mm] = [mm] x^{2}. [/mm] Damit wäre Unstetigkeit für alle irrationalen Zahlen gezeigt. So steht es jedenfalls in vielen Beispielen, nur verstehen tue ich das/folgendes nicht:
Wenn [mm] \limes_{n\rightarrow\infty} a_n [/mm] = [mm] x_0 [/mm] ist, wieso ist dann [mm] \limes_{n\rightarrow\infty} f(a_n) \not= f(x_0)?
[/mm]
Fall 2. $ [mm] x_0 [/mm] $ ist irrational. Wähle eine Folge irationaler Zahlen $ [mm] (b_n) [/mm] $ mit $ [mm] a_n \to x_0. [/mm] $ Konvergiert dann $ [mm] (f(b_n)) [/mm] $ gegen $ [mm] f(x_0) [/mm] $ ?
Ich gehe davon aus, dass du dich verschrieben hast und eine Folge rationaler Zahlen meintest (?):
Hier analog:
[mm] \limes_{n\rightarrow\infty} f(b_n) [/mm] = [mm] x^{2} \not= f(x_0) [/mm] = 0
daraus folgt auch die Unstetigkeit für rationale Zahlen [mm] x_0.
[/mm]
Was mir daran nicht klar ist, habe ich ja oben geschildert.. könnte mir das jmd erklären?
Grüße, kullinarisch
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:51 Do 15.12.2011 | Autor: | fred97 |
> Hallo,
> ich fasse nochmal zusammen, ich denke mein voriger Text
> war etwas chaotisch:
>
> Fall 1: [mm]x_0[/mm] ist rational. Wähle eine Folge irrationaler
> Zahlen [mm](a_n)[/mm] mit [mm]a_n \to x_0.[/mm]
> Konvergiert dann [mm](f(a_n))[/mm]
> gegen [mm]f(x_0)[/mm] ?
>
> Antwort: Nein. [mm]\limes_{n\rightarrow\infty} f(a_n)=[/mm] 0 [mm]\not= f(x_0)[/mm]
> = [mm]x^{2}.[/mm] Damit wäre Unstetigkeit für alle irrationalen
> Zahlen gezeigt. So steht es jedenfalls in vielen
> Beispielen, nur verstehen tue ich das/folgendes nicht:
>
> Wenn [mm]\limes_{n\rightarrow\infty} a_n[/mm] = [mm]x_0[/mm] ist, wieso ist
> dann [mm]\limes_{n\rightarrow\infty} f(a_n) \not= f(x_0)?[/mm]
Es war [mm] x_0 [/mm] rational und [mm] \ne [/mm] 0, [mm] a_n [/mm] irrational, also [mm] f(a_n)=0 [/mm] für alle n.
Damit: lim [mm] f(a_n) [/mm] =0 [mm] \ne x_0^2=f(x_0)
[/mm]
>
>
> Fall 2. [mm]x_0[/mm] ist irrational. Wähle eine Folge irationaler
> Zahlen [mm](b_n)[/mm] mit [mm]a_n \to x_0.[/mm] Konvergiert dann [mm](f(b_n))[/mm]
> gegen [mm]f(x_0)[/mm] ?
>
> Ich gehe davon aus, dass du dich verschrieben hast und eine
> Folge rationaler Zahlen meintest (?):
Ja
> Hier analog:
> [mm]\limes_{n\rightarrow\infty} f(b_n)[/mm] = [mm]x^{2} \not= f(x_0)[/mm] =
> 0
> daraus folgt auch die Unstetigkeit für rationale Zahlen
> [mm]x_0.[/mm]
>
> Was mir daran nicht klar ist, habe ich ja oben
> geschildert.. könnte mir das jmd erklären?
lim [mm] f(b_n)= [/mm] lim [mm] b_n^2=x_0^2 \ne [/mm] 0 [mm] =f(x_0)
[/mm]
FRED
>
> Grüße, kullinarisch
>
|
|
|
|
|
Gut, vielen Dank. Offenbar reicht es so für die Aufgabe, finde die Idee mit dem rechtsseitigen und dem linksseitigem limes allerdings gar nicht so schlecht..
Grüße, kullinarisch
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:54 Do 15.12.2011 | Autor: | fred97 |
> Gut, vielen Dank. Offenbar reicht es so für die Aufgabe,
Was soll das "offenbar" .. ?
> finde die Idee mit dem rechtsseitigen und dem linksseitigem
> limes allerdings gar nicht so schlecht..
Na, dann mach doch mal, her mit Deinen Betrachtungen !
FRED
>
> Grüße, kullinarisch
|
|
|
|
|
Dieses "offenbar" sollte sollte nur als Provokation dienen, mir hat die Antwort nicht ganz gereicht :P
Ich dachte es wäre etwas anschaulicher sich an [mm] f(x_0) [/mm] mithilfe von 2 verschiedenen Folgen anzunähern. Einmal von rechts, einmal von links.
Aber inzwischen hab ich selber gemerkt, dass man es sich sparen kann.
Grüße
|
|
|
|
|
Mir ist da noch etwas eingefallen. Im Prinzip würde das auch meine Frage beantworten, also korrigiert mich falls ich falsch liege :)
Wenn ich nämlich den rechtsseitigen limes und den linksseitigen limes betrachte, dann habe ich sehr wohl zwei verschiedene Grenzwerte. Das kann ja nur sein wenn die Funktion an dieser Stelle unstetig ist. Was mich wundert ist, das wir rechtss./linkss. limes noch nicht in der vorlesung hatten.. Muss man bei dieser Aufg. wirklich auf dieses Mittel zurückgreifen?
liebe Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:52 Do 15.12.2011 | Autor: | fred97 |
> Mir ist da noch etwas eingefallen. Im Prinzip würde das
> auch meine Frage beantworten, also korrigiert mich falls
> ich falsch liege :)
> Wenn ich nämlich den rechtsseitigen limes und den
> linksseitigen limes betrachte, dann habe ich sehr wohl zwei
> verschiedene Grenzwerte. Das kann ja nur sein wenn die
> Funktion an dieser Stelle unstetig ist. Was mich wundert
> ist, das wir rechtss./linkss. limes noch nicht in der
> vorlesung hatten.. Muss man bei dieser Aufg. wirklich auf
> dieses Mittel zurückgreifen?
>
Nein
FRED
> liebe Grüße
|
|
|
|