Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:54 Mo 01.01.2007 | Autor: | vicky |
Aufgabe | Man zeige die Stetigkeit folgender Funktion auf [mm] \IR:
[/mm]
f(x) = [x] + [mm] \wurzel[n]{x-[x]} [/mm] ,n [mm] \ge [/mm] 2. |
Hallo und ein frohes neues Jahr,
komme bei dieser Aufgabe irgendwie nicht so recht weiter und habe schon vieles probiert doch nichts hat mich voran gebracht.
Die Definition für Stetigkeit lautet folgendermaßen:
[mm] \forall\epsilon>0\exists\delta>0 \forall [/mm] z [mm] \in [/mm] D: [mm] |z-z_{0}|<\delta\Rightarrow |f(z)
In erster Linie verwirren mich die Gaußklammern ein wenig und dann die Wurzel. Haben zwei sehr einfache Übungsaufgaben diesbezüglich schon gerechnet doch so recht weiterbringen tun diese mich nicht.
Hier mein Ansatz:
Ich gebe mir ein [mm] \epsilon>0 [/mm] vor und ein [mm] x_{0} \in \IR
[/mm]
[mm] |([x]+\wurzel[n]{x-[x]}) [/mm] - [mm] ([x_{0}]+\wurzel[n]{x_{0}-[x_{0}]}| [/mm] < [mm] \epsilon [/mm]
wenn [mm] x_{0} [/mm] = 0 ist fällt der hintere Term weg (alles nach dem minus-Zeichen). ich betrachte dann |[x] + [mm] \wurzel[n]{x-[x]}| \le |[x]|+|\wurzel[n]{x-[x]}|\le|[x]| [/mm] + [mm] \wurzel[n]{|x-[x]|} [/mm] < epsilon
Dann kann ich auch noch den Fall [mm] x_{0}\not=0 [/mm] betrachten.
Irgendwann muß ich dann einen Wert für [mm] \delta [/mm] erhalten der von [mm] \epsilon [/mm] abhängt mit dem dann die Implikation [mm] |x-x_{0}|<\delta\Rightarrow|([x]+\wurzel[n]{x-[x]}) [/mm] - [mm] ([x_{0}]+\wurzel[n]{x_{0}-[x_{0}]})|<\epsilon [/mm] gilt.
Bin für jede Hilfe dankbar.
Gruß
vicky
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:38 Mo 01.01.2007 | Autor: | moudi |
Hallo vicky
Hier würde ich nicht mit der [mm] $\epsilon\,\delta$-Definition [/mm] der Stetigkeit arbeiten, sondern mit den einschlägigen Sätzen.
i) [mm] $x^{(1/n)}$ [/mm] ist stetig für [mm] $x\geq [/mm] 0$ und n positiv
ii) [x] ist stetig für [mm] $x\in\IR\setminus\IZ$
[/mm]
Deshalb musst du nur zeigen, dass f(x) stetig ist für [mm] $x\in\IZ$, [/mm] weil Addition und Verknüpfung von stetigen Funktionen stetige Funktionen erzeugt.
Um zu zeigen, dass f(x) stetig ist für [mm] $x_0\in\IZ$ [/mm] würde ich zeigen, dass der linksseitige und der rechtseitige Grenzwert gleich sind d.h.
[mm] $\lim_{x\to x_0^-}f(x)=\lim_{x\to x_0^+}f(x)$ [/mm] für [mm] $x_0\in\IZ$.
[/mm]
mfG Moudi
|
|
|
|