matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStetigkeit einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Do 01.12.2005
Autor: JeanLuc

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,

also die Aufgabe ist zu bestimmen wann die Funktion f(x):= [mm] \limes_{n\rightarrow\infty} \bruch{x^{2n-1}+ax^2+bx}{x^{2n}+1} [/mm]

stetig ist.

Ich habe also zuerst mal versucht den Limes auszurechnen um so direkt auf f(x) zu kommen, bin aber gescheitert. Habe die x^(2n) umgestellt nach 2n^(ln(x)) aber auch das hat nicht zum Erfolg geführt.
Jetzt ist die Frage ob ich den Grenzwert überhaupt zuerst ausrechnen muss.

Habe mit überlegt, dass eine Funktion stetig ist, wenn ein Grenzwert L  mit x -> x0 existiert und f(L) = x0 ist

Ich weiß, das ganze ist was knapp, aber auch nur darum weil ich schon den ganzen abend versuche das ding zu lösen

thx

        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Fr 02.12.2005
Autor: Leopold_Gast

Ich denke, du sollst schon den Grenzwert berechnen. Unterscheide die folgenden Fälle:

Fall 1
[mm]|x|<1, \ \ \ \lim_{n \to \infty} x^{2n-1} = \lim_{n \to \infty} x^{2n} = 0[/mm]

Fall 2
[mm]x = 1, \ \ \ 1^{2n-1} = 1^{2n} = 1[/mm]

Fall 3
[mm]x = -1, \ \ \ (-1)^{2n-1} = -1 \, , \ (-1)^{2n} = 1[/mm]

Fall 4
[mm]|x|>1, \ \ \ \lim_{n \to \infty} \frac{x^{2n-1}}{x^{2n} +1} = \frac{1}{x}[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]