Stetigkeit der Funktionenreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:07 Mi 01.02.2012 | Autor: | Niels90 |
Man zeige : Aufgabe | f(x):= [mm] \summe_{n=1}^{\infty} \bruch{sin x}{x^{2} + n^{2}} [/mm] |
definiert eine stetige Funktion auf R.
Hab leider nicht wirklich eine Idee, vllt könnte man mit der gleichmäßigen Stetigkeit einer Funktionsfolge da irgendwas machen?
Danke schonmal
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:07 Do 02.02.2012 | Autor: | Marcel |
Hallo,
> Man zeige : f(x):= [mm]\summe_{n=1}^{\infty} \bruch{sin x}{x^{2} + n^{2}}[/mm]
>
> definiert eine stetige Funktion auf R.
> Hab leider nicht wirklich eine Idee, vllt könnte man mit
> der gleichmäßigen Stetigkeit einer Funktionsfolge da
> irgendwas machen?
ich nehm' den Telefonjoker, rufe Weierstraß an, und der sagt folgendes:
"Hallo Herr Jauch... ja, es ist so: [mm] $\sum_{n=1}^\infty \frac{1}{n^2}$ [/mm] "dominiert" diese Funktionenreihe, daher konvergiert sie absolut und gleichmäßig! Wie?? Ja, ich bin mir sicher! Antwort c) ist richtig: Die Voraussetzungen von Satz 15.6 sind erfüllt, und in Verbindung mit Satz 15.10 (bzw. der anschließenden Bemerkung) ist obige Funktionenreihe überall stetig. Wie? Nein, Antwort a), dass sie an manchen Stellen undefiniert sei, ist totaler Quatsch, Antwort b).... " (tut tut tut).
Leider war das Gespräch da zu Ende. Aber bitte: Wenn da irgendwas nicht stimmen sollte: Die Schuld trägt mein Telefonjoker (aber der ist so kompetent und überzeugend gewesen, dem vertraue ich total)!
Gruß,
Marcel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:09 Do 02.02.2012 | Autor: | Niels90 |
Ok vielen Dank erstmal. Also man argumentiert quasi so dass man sagt, dass die gegebene Reihe eine "Zusammensetzung" aus einer bekannten (konvergenten) Reihe und einer Funktionenfolge ist. Die Funktionfolge an sich ist stetig, und aus diesen 2 Bedingungen lässt sich dann ableiten, dass auch die Funktionenreihe stetig ist?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:39 Do 02.02.2012 | Autor: | Marcel |
Hallo,
> Ok vielen Dank erstmal. Also man argumentiert quasi so dass
> man sagt, dass die gegebene Reihe eine "Zusammensetzung"
> aus einer bekannten (konvergenten) Reihe und einer
> Funktionenfolge ist. Die Funktionfolge an sich ist stetig,
> und aus diesen 2 Bedingungen lässt sich dann ableiten,
> dass auch die Funktionenreihe stetig ist?
das verstehe ich nicht. Ich kann Dir aber sagen, wie's richtig ist:
Erstmal erinnere ich Dich:
Eine Reihe [mm] $\sum_{k=1}^\infty a_k$ [/mm] ist nichts anderes als eine Kurznotation für die Folge [mm] $(s_n)_n$ [/mm] ihrer Teilsummen, wobei
[mm] $$s_n:=\sum_{k=1}^n a_k\,.$$
[/mm]
Das ist eine reine Definition, hier steht noch nichts über Konvergenz oder Grenzwert mit drin!
Man schreibt aber zudem, falls die Reihe [mm] $\sum_{k=1}^\infty a_k$ [/mm] konvergent ist, auch [mm] $\sum_{k=1}^\infty [/mm] a [mm] _k:=\lim_{n \to \infty}s_n\,.$
[/mm]
Daher hat das Symbol [mm] $\sum_{k=1}^\infty a_k$ [/mm] i.a. zwei Bedeutungen - jedenfalls, wenn die Teilsummenfolge konvergiert. Aber aus dem Zusammenhang sollte dann stets klar sein, welche gemeint ist. Im Falle der Divergenz haben wir "i.a. KEINE Zweideutigkeit" (ich schreibe deswegen "i.a.", weil man dem Symbol auch etwa eine Bedeutung zuordnet, wenn die Teilsummenfolge bedingt divergent gegen [mm] $\infty$ [/mm] ist).
Analoge Bedeutungen übertragen sich dann auch auf "Funktionenreihen".
Was haben wir nun gemacht:
Naja, vorliegend war eine Funktionenreihe der Form [mm] $\sum_{k=1}^\infty f_k(x)\,,$ [/mm] also eine Folge [mm] $(s_n(x))_n$ [/mm] mit
[mm] $$s_n(x):=\sum_{k=1}^n f_k(x)\,.$$
[/mm]
Mit Weierstraß hatten wir gesehen, dass die Reihe
[mm] $$\sum_{k=1}^\infty f_k(x)$$
[/mm]
auf [mm] $\IR$ [/mm] absolut und gleichmäßig konvergiert - d.h. dann, dass [mm] $(s_n(x))_n\equiv\left(\sum_{k=1}^n f_k(x)\right)_{n}$ [/mm] auf [mm] $\IR$ [/mm] gleichmäßig konvergiert (und dass [mm] $\left(\sum_{k=1}^n |f_n(x)|\right)_n$ [/mm] für jedes $x [mm] \in \IR$ [/mm] konvergiert).
Nun ist jedes [mm] $f_k$ [/mm] stetig auf [mm] $\IR\,,$ [/mm] daraus folgt, dass auch jedes [mm] $s_n\,$ [/mm] stetig auf [mm] $\IR$ [/mm] ist (endliche Summen stetiger Funktionen sind stetig). Wegen der oben eingesehen glm. Kgz. von [mm] $(s_n(x))_n$ [/mm] ist mit [mm] $s(x):=\lim_{n \to \infty}s_n(x)=\sum_{k=1}^\infty f_k(x)$ [/mm] dann auf [mm] $\IR$ [/mm] eine Funktion definiert, die an jeder Stelle $x [mm] \in\IR$ [/mm] stetig ist. Das folgt aus dem Satz "Gleichmäßige Grenzwerte einer Folge stetiger Funktionen sind stetig", wobei man diesen auf die Teilsummenfolge der Funktionenreihe anwendet!
Gruß,
Marcel
|
|
|
|