Stetigkeit, c bestimmen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:47 Di 13.12.2011 | Autor: | Pia90 |
Hallo zusammen,
ich sitze gerade an einer Aufgabe zur Stetigkeit und weiß gar nicht so genau, ob das alles so richtig ist, wie ich das mache, weil ich dann irgendwie nicht mehr weiterkomme... Es wäre super, wenn ihr über meine Ausführungen drüberschauen könntet und mir vielleicht an den Stellen, an denen ich nicht weiterkomme, helfen könntet...
Also gegeben ist folgende Funktion
h: [mm] \IR \to \IR, h(x)=\begin{cases} \bruch{cos(x)-1}{x^2}, & \mbox{falls } x \not= 0 \\ c, & \mbox{falls} x=0 \end{cases}
[/mm]
Das c [mm] \in \IR [/mm] soll jetzt so bestimmt werden, dass die Funktion stetig auf [mm] \IR [/mm] ist und die Stetigkeit der Funktion soll ausführlich begründet werden.
Ich habe nun wie folgt begonnen:
1.) Sei x [mm] \in \IR \backslash [/mm] {0}. Sei nun [mm] U_x \subset \IR \backslash [/mm] {0} Umgebung von x.
Es sind
[mm] U_x \to \IR, [/mm] y [mm] \mapsto [/mm] cos(y); [mm] U_x \to \IR, [/mm] y [mm] \mapsto x^2; U_x \to \IR, [/mm] y [mm] \mapsto [/mm] -1 stetig als Potenzreihe mit Konv.radius [mm] \infty [/mm] bzw. Polynom
=> [mm] h(y)|U_x [/mm] = [mm] \bruch{cos(x)-1}{x^2} [/mm] => Stetigkeit von h auf [mm] U_x, [/mm] also speziell in x.
2.) Sei [mm] (x_n)_{n \in \IN} \in \IR^{\IN} [/mm] mit [mm] \limes_{n\rightarrow\infty} x_n [/mm] = 0. [mm] Cos(x)=\summe_{k=0}^{\infty} \bruch{(-1)^k x^{2k}}{(2k)!} [/mm] mit Konvergenzsradius [mm] \infty
[/mm]
[mm] \bruch{cos(x)-1}{x^2}=\bruch{\summe_{k=0}^{\infty} \bruch{(-1)^k x^{2k}}{(2k)!}-1}{x^2}= \summe_{k=0}^{\infty} \bruch{(-1)^k x^{2k-2}}{(2k)!} -\bruch{1}{x^2} (\forall [/mm] x [mm] \in \IR \backslash [/mm] {0})
So und jetzt kommen meine ersten Schwierigkeiten...
Mit dem Quotientenkriterium: | [mm] \bruch{\bruch{(-1)^{k+1}}{(2(k+1))!}x^{2k}-\bruch{1}{x^2}}{\bruch{(-1)^{k}}{(2k)!}x^{2k-2}-\bruch{1}{x^2}}| [/mm] = ...= [mm] |\bruch{(-1)^{k+1} x^{2k+2} - (2k+2)!}{(2k+2)(2k+1)(-1)^k x^{2k} - (2k+2)!}|
[/mm]
Das würde ich gerne derart umgeformt bekommen, dass ich k gegen unendlich laufen lassen kann... Aber ich bekomms einfach nicht hin...
Dann könnte ich halt (hoffentlich) folgern:
=> [mm] \forall [/mm] x [mm] \in \IR \backslash [/mm] {0} ist x [mm] \mapsto \bruch{cos(x)-1}{x^2} [/mm] stetig und die Reihe ist absolut konvergent [mm] \forall [/mm] x [mm] \in \IR.
[/mm]
Dann könnte ich 0 [mm] \le |h(x_n)-c| [/mm] ansetzen und hoffen, dass ich da am Ende das rausbekomme, was ich bei dem Quotientenkriterium auch rausbekommen habe
Und daraus würde schließlich folgen
[mm] \limes_{n\rightarrow\infty} h(x_n)=c [/mm] => h stetig in x=0
LG Pia
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:58 Di 13.12.2011 | Autor: | fred97 |
> Hallo zusammen,
> ich sitze gerade an einer Aufgabe zur Stetigkeit und weiß
> gar nicht so genau, ob das alles so richtig ist, wie ich
> das mache, weil ich dann irgendwie nicht mehr
> weiterkomme... Es wäre super, wenn ihr über meine
> Ausführungen drüberschauen könntet und mir vielleicht an
> den Stellen, an denen ich nicht weiterkomme, helfen
> könntet...
> Also gegeben ist folgende Funktion
>
> h: [mm]\IR \to \IR, h(x)=\begin{cases} \bruch{cos(x)-1}{x^2}, & \mbox{falls } x \not= 0 \\ c, & \mbox{falls} x=0 \end{cases}[/mm]
>
> Das c [mm]\in \IR[/mm] soll jetzt so bestimmt werden, dass die
> Funktion stetig auf [mm]\IR[/mm] ist und die Stetigkeit der Funktion
> soll ausführlich begründet werden.
>
> Ich habe nun wie folgt begonnen:
>
> 1.) Sei x [mm]\in \IR \backslash[/mm] {0}. Sei nun [mm]U_x \subset \IR \backslash[/mm]
> {0} Umgebung von x.
> Es sind
> [mm]U_x \to \IR,[/mm] y [mm]\mapsto[/mm] cos(y); [mm]U_x \to \IR,[/mm] y [mm]\mapsto x^2; U_x \to \IR,[/mm]
> y [mm]\mapsto[/mm] -1 stetig als Potenzreihe mit Konv.radius [mm]\infty[/mm]
> bzw. Polynom
> => [mm]h(y)|U_x[/mm] = [mm]\bruch{cos(x)-1}{x^2}[/mm] => Stetigkeit von h
> auf [mm]U_x,[/mm] also speziell in x.
Na ja, man sieht, was Du meinst. Aber es geht doch ganz kurz:
Auf [mm] \IR \setminus \{0\} [/mm] ist h als Zusammensetzung stetiger Funktionen stetig.
>
> 2.) Sei [mm](x_n)_{n \in \IN} \in \IR^{\IN}[/mm] mit
> [mm]\limes_{n\rightarrow\infty} x_n[/mm] = 0.
> [mm]Cos(x)=\summe_{k=0}^{\infty} \bruch{(-1)^k x^{2k}}{(2k)!}[/mm]
> mit Konvergenzsradius [mm]\infty[/mm]
> [mm]\bruch{cos(x)-1}{x^2}=\bruch{\summe_{k=0}^{\infty} \bruch{(-1)^k x^{2k}}{(2k)!}-1}{x^2}= \summe_{k=0}^{\infty} \bruch{(-1)^k x^{2k-2}}{(2k)!} -\bruch{1}{x^2} (\forall[/mm]
> x [mm]\in \IR \backslash[/mm] {0})
Oh oh ! Machs doch übersichtlich:
[mm] $\bruch{cos(x)-1}{x^2}= \bruch{1}{x^2}(1-\bruch{x^2}{2!}+\bruch{x^4}{4!}-\bruch{x^6}{6!}+-....-1)= \bruch{-1}{2!}+\bruch{x^2}{4!}-\bruch{x^4}{6!}+-.... \to -\bruch{1}{2}$
[/mm]
D.h. : für $c= [mm] -\bruch{1}{2}$ [/mm] ist h steig in x=0.
Fazit: h ist auf [mm] \IR [/mm] stetig [mm] \gdw [/mm] $c= [mm] -\bruch{1}{2}$ [/mm]
>
> So und jetzt kommen meine ersten Schwierigkeiten...
Was jetzt kommt brauchst Du doch gar nicht !
FRED
>
> Mit dem Quotientenkriterium: |
> [mm]\bruch{\bruch{(-1)^{k+1}}{(2(k+1))!}x^{2k}-\bruch{1}{x^2}}{\bruch{(-1)^{k}}{(2k)!}x^{2k-2}-\bruch{1}{x^2}}|[/mm]
> = ...= [mm]|\bruch{(-1)^{k+1} x^{2k+2} - (2k+2)!}{(2k+2)(2k+1)(-1)^k x^{2k} - (2k+2)!}|[/mm]
>
> Das würde ich gerne derart umgeformt bekommen, dass ich k
> gegen unendlich laufen lassen kann... Aber ich bekomms
> einfach nicht hin...
>
> Dann könnte ich halt (hoffentlich) folgern:
> => [mm]\forall[/mm] x [mm]\in \IR \backslash[/mm] {0} ist x [mm]\mapsto \bruch{cos(x)-1}{x^2}[/mm]
> stetig und die Reihe ist absolut konvergent [mm]\forall[/mm] x [mm]\in \IR.[/mm]
>
> Dann könnte ich 0 [mm]\le |h(x_n)-c|[/mm] ansetzen und hoffen, dass
> ich da am Ende das rausbekomme, was ich bei dem
> Quotientenkriterium auch rausbekommen habe
>
> Und daraus würde schließlich folgen
> [mm]\limes_{n\rightarrow\infty} h(x_n)=c[/mm] => h stetig in x=0
>
> LG Pia
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:48 Di 13.12.2011 | Autor: | Pia90 |
Erstmal vielen Dank für die schnelle Antwort!
Das scheint ja wirklich nicht so schwer zu sein, wie ich es mir gemacht habe...
Die Begründungen sind für mich logisch und auch eindeutig, aber in der Aufgabe steht ja extra, dass die Stetigkeit "ausführlich" begründet werden soll...
Aber im Grunde umfasst die Begründung, dass h auf [mm] \IR \backslash [/mm] {0} als Zusammensetzung stetiger Funktionen stetig ist und c ja gerade so gewählt wird, dass h auch in x=0 stetig ist, alles, oder?
|
|
|
|
|
Hallo Pia90,
> Erstmal vielen Dank für die schnelle Antwort!
>
> Das scheint ja wirklich nicht so schwer zu sein, wie ich es
> mir gemacht habe...
>
> Die Begründungen sind für mich logisch und auch
> eindeutig, aber in der Aufgabe steht ja extra, dass die
> Stetigkeit "ausführlich" begründet werden soll...
> Aber im Grunde umfasst die Begründung, dass h auf [mm]\IR \backslash[/mm]
> {0} als Zusammensetzung stetiger Funktionen stetig ist und
> c ja gerade so gewählt wird, dass h auch in x=0 stetig
> ist, alles, oder?
Ja.
Gruss
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:09 Di 13.12.2011 | Autor: | Pia90 |
Danke!
|
|
|
|