matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit, 2 Veränderliche
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Stetigkeit, 2 Veränderliche
Stetigkeit, 2 Veränderliche < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit, 2 Veränderliche: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:22 Fr 22.05.2009
Autor: Walodja1987

Aufgabe
An welchen Punkten ist die folgende Funktion [mm] f:\IR^2 \to \IR [/mm] stetig.



[mm] f(x,y)=\begin{cases} \bruch{sin(xy)}{xy^2}, & \mbox{für } x \neq 0, y \neq 0, \\ \bruch{1}{y}, & \mbox{für } x=0, y\neq 0 \\ \bruch{1}{x}, & \mbox{für} x \neq 0, y=0 \\ 0, & \mbox{für} x=y=0\end{cases} [/mm]

Hallo, bräuchte einen kurzen Tipp, wie ich beweisen kann, dass  f(x,y) an, [mm] \bruch{1}{x} [/mm] und 0 nicht stetig ist.

Ich habe die Stetigkeit bei [mm] \bruch{1}{y} [/mm] folgendermaßen gezeigt:

[mm] \bruch{sin(xy)}{xy^2}=\bruch{\summe_{n=0}^{\infty}(-1)^n\bruch{xy^{2n+1}}{(2n+1)!}}{xy^2}=(xy [/mm] - [mm] \bruch{x^3y^3}{3!} [/mm] + [mm] ...)\bruch{1}{xy^2} \to \bruch{1}{y} [/mm] für x [mm] \to [/mm] 0

Jetzt habe ich folgende Frage: Kann ich sagen, dass der Grenzwert für y [mm] \to [/mm] o nicht definiert ist und somit nicht existiert und daraus folgern, dass f(x,y) an dieser Stelle nicht stetig ist.
Dasselbe auch für x [mm] \to0 [/mm] und [mm] y\to0. [/mm]
Reicht das, um zu zeigen, dass es an diesen Stellen nicht stetig ist?

Danke für jede hilfreiche Antwort.

Gruß Walodja1987

        
Bezug
Stetigkeit, 2 Veränderliche: Antwort
Status: (Antwort) fertig Status 
Datum: 02:26 Sa 23.05.2009
Autor: Gonozal_IX

Hiho,

machs dir nicht so kompliziert ;-)

Offensichtlich ist:

[mm]g(x) = f(x,0) = \begin{cases} 0, & \mbox{für } x=0 \\ \bruch{1}{x}, & \mbox{für } x\not=0 \end{cases}[/mm]

unstetig in 0.
Wenn g schon nicht stetig, so erst recht nicht f.

MfG,
Gono.

Bezug
                
Bezug
Stetigkeit, 2 Veränderliche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:14 Sa 23.05.2009
Autor: Walodja1987

alles klar,

dankeschön für den Tipp.

Gruß Walodja1987

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]