matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit - Limeskriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Stetigkeit - Limeskriterium
Stetigkeit - Limeskriterium < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit - Limeskriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Fr 03.04.2015
Autor: needmath

Aufgabe
Ich beschäftige mich gerade mit dem Limes- und Folgenkriterium für Stetigkeiten.

Fangen wir mit den Limeskriterium an. ich habe die Definition so geändert, sodass es für mich einfacher zu verstehen ist

Definition: f ist stetig in [mm] x_0, [/mm] falls für alle x mit [mm] x\to x_0 [/mm] gilt: [mm] f(x)\to f(x_0) [/mm]

Kurz: [mm] \limes_{n\rightarrow x_0}f(x)=f(x_0) [/mm]

kann ich die Definition so stehen lassen oder ist die definition falsch bzw. schlecht? dann bitte verbessern



Kann jemand sich eine Aufgabe ausdenken, wo ich dann das Limeskriterum anwenden kann?
Die aufgabe sollte aber nicht besonders schwer sein

        
Bezug
Stetigkeit - Limeskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Fr 03.04.2015
Autor: M.Rex

Hallo

> Ich beschäftige mich gerade mit dem Limes- und
> Folgenkriterium für Stetigkeiten.

>

> Fangen wir mit den Limeskriterium an. ich habe die
> Definition so geändert, sodass es für mich einfacher zu
> verstehen ist

>

> Definition: f ist stetig in [mm]x_0,[/mm] falls für alle x mit [mm]x\to x_0[/mm]
> gilt: [mm]f(x)\to f(x_0)[/mm]

>

> Kurz: [mm]\limes_{n\rightarrow x_0}f(x)=f(x_0)[/mm]

>

> kann ich die Definition so stehen lassen oder ist die
> definition falsch bzw. schlecht? dann bitte verbessern

Das ist soweit fast ok, du solltest es aber genauer formulieren.

Eine Funktion ist dann MBstetig, wenn der links- und der Rechtsseitige Grenzwert an der Stelle [mm] x_{0} [/mm] gleich dem Funktionswert [mm] f(x_{0}) [/mm] sind.

>
>

> Kann jemand sich eine Aufgabe ausdenken, wo ich dann das
> Limeskriterum anwenden kann?
> Die aufgabe sollte aber nicht besonders schwer sein

Schau dazu auch mal unter []Kapitel 5.1 bei []poenitz-net, die Seite kann ich sowieso nur empfehlen.

Marius

Bezug
                
Bezug
Stetigkeit - Limeskriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 Fr 03.04.2015
Autor: fred97


> Hallo
>  
> > Ich beschäftige mich gerade mit dem Limes- und
>  > Folgenkriterium für Stetigkeiten.

>  >
>  > Fangen wir mit den Limeskriterium an. ich habe die

>  > Definition so geändert, sodass es für mich einfacher

> zu
>  > verstehen ist

>  >
>  > Definition: f ist stetig in [mm]x_0,[/mm] falls für alle x mit

> [mm]x\to x_0[/mm]
>  > gilt: [mm]f(x)\to f(x_0)[/mm]

>  >
>  > Kurz: [mm]\limes_{n\rightarrow x_0}f(x)=f(x_0)[/mm]

>  >
>  > kann ich die Definition so stehen lassen oder ist die

>  > definition falsch bzw. schlecht? dann bitte verbessern

>  
> Das ist soweit fast ok, du solltest es aber genauer
> formulieren.
>  
> Eine Funktion ist dann MBstetig, wenn der links- und der
> Rechtsseitige Grenzwert an der Stelle [mm]x_{0}[/mm] gleich sind.


Das stimmt aber nicht !

  f(x):=0  für x [mm] \ne [/mm] 0  und f(0):=13

und

[mm] x_0=0. [/mm]


Gruß FRED

>  
> >
>  >
>  > Kann jemand sich eine Aufgabe ausdenken, wo ich dann

> das
>  > Limeskriterum anwenden kann?

>  > Die aufgabe sollte aber nicht besonders schwer sein

>  
> Schau dazu auch mal unter
> []Kapitel 5.1
> bei []poenitz-net, die Seite kann
> ich sowieso nur empfehlen.
>  
> Marius


Bezug
                        
Bezug
Stetigkeit - Limeskriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 Fr 03.04.2015
Autor: M.Rex

Hallo Fred.


> >
> > Eine Funktion ist dann MBstetig, wenn der links- und der
> > Rechtsseitige Grenzwert an der Stelle [mm]x_{0}[/mm] gleich sind.

>
>

> Das stimmt aber nicht !

>

> f(x):=0 für x [mm]\ne[/mm] 0 und f(0):=13

>

> und

>

> [mm]x_0=0.[/mm]

>
>

> Gruß FRED


Ich habe in der Tat den Vergleich mit dem Funktionswert [mm] f(x_{0}) [/mm] vergessen, und habe meinen Beitrag dahingehend korrigiert. Danke für den Hinweis.

Marius

Bezug
        
Bezug
Stetigkeit - Limeskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Fr 03.04.2015
Autor: fred97


> Ich beschäftige mich gerade mit dem Limes- und
> Folgenkriterium für Stetigkeiten.
>  
> Fangen wir mit den Limeskriterium an. ich habe die
> Definition so geändert, sodass es für mich einfacher zu
> verstehen ist
>  
> Definition: f ist stetig in [mm]x_0,[/mm] falls für alle x mit [mm]x\to x_0[/mm]
> gilt: [mm]f(x)\to f(x_0)[/mm]
>  
> Kurz: [mm]\limes_{n\rightarrow x_0}f(x)=f(x_0)[/mm]

Na ja. Zu definieren wäre dann aber noch:  



      " [mm]f(x)\to f(x_0)[/mm]   für [mm]x\to x_0[/mm] ".


FRED



>  
> kann ich die Definition so stehen lassen oder ist die
> definition falsch bzw. schlecht? dann bitte verbessern
>  
>
> Kann jemand sich eine Aufgabe ausdenken, wo ich dann das
> Limeskriterum anwenden kann?
> Die aufgabe sollte aber nicht besonders schwer sein


Bezug
                
Bezug
Stetigkeit - Limeskriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Fr 03.04.2015
Autor: needmath

ich hätte es jetzt so definiert:

Eine funktion [mm] f:\IR\to \IR [/mm] ist stetig in [mm] x_0 \in [/mm] D, falls für alle [mm] x\in [/mm] D mit [mm] x\to +-x_0 [/mm] gilt: [mm] f(x)\to f(x_0) [/mm]

Kurz: [mm] \limes_{x\rightarrow +-x_0}f(x)=f(x_0) [/mm]

ich habe folgende Aufgabe gefunden:

[mm] f(x)=\begin{cases} 1-e^x, & \mbox{für } x \ge0\\ x^2, & \mbox{für }x<0\end{cases} [/mm]

ist f(x) stetig?

[mm] \limes_{x\rightarrow +0}f(x)=\limes_{x\rightarrow +x_0}1-e^x=1-1=0 [/mm]

[mm] \limes_{x\rightarrow -0}f(x)=\limes_{x\rightarrow +x_0}0^2=0 [/mm]

Antwort: ja f(x) ist stetig

Das Folgenkriterium hätte ich so definiert:

Eine funktion [mm] f:\IR\to \IR [/mm] ist stetig in [mm] x_0 \in [/mm] D, falls für die Folge [mm] x_k [/mm] mit [mm] k\in [/mm] N gilt: [mm] x_k\to x_o \Rightarrow f(x_k)\to f(x_0) [/mm]

sind die Definitionen richtig?

Bezug
                        
Bezug
Stetigkeit - Limeskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Fr 03.04.2015
Autor: Gonozal_IX

Hiho,

fred hat dir doch schon einen klaren Hinweis gegeben, nämlich:

> Na ja. Zu definieren wäre dann aber noch:  
> " $ [mm] f(x)\to f(x_0) [/mm] $   für $ [mm] x\to x_0 [/mm] $ ".

Hast du das bisher getan? Nein!
Denn dann wäre deine Frage total hinfällig.

Dir würde nämlich auffallen, dass sich deine Definitionen nicht im geringsten unterscheiden, sondern einfach nur unterschiedliche Schreibweisen und keine anderen Definitionen sind.

Manchmal machen Fragen, die man dir stellt, durchaus Sinn.....

Nichtsdestotrotz hast du Fehler in deinen Definitionen:

> falls für alle [mm]x\in[/mm] D mit [mm]x\to +-x_0[/mm] gilt

Wie kann einerseits [mm] $x\in [/mm] D$, also ein Element von D, sein und [mm] $x\to x_0$ [/mm] gelten, d.h. x eine Folge. Das macht keinen Sinn.
Das liegt aber daran, dass du die Schreibweise [mm] "$x\to x_0$" [/mm] noch nicht dargelegt hast, was die eigentlich meinst, dann wäre dir das selbst aufgefallen....

> falls für die Folge [mm]x_k[/mm] mit [mm]k\in[/mm] N

Was ist denn die Folge.
Gibt es nur eine? Ich wage es zu bezweifeln..... Das Zauberwort heißt hier alle.

Aber wie war das noch mit dem Symbol [mm] $x\to x_0$? [/mm]

Gruß,
Gono

Bezug
                                
Bezug
Stetigkeit - Limeskriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Fr 03.04.2015
Autor: needmath


> fred hat dir doch schon einen klaren Hinweis gegeben,
> nämlich:
>  
> > Na ja. Zu definieren wäre dann aber noch:  
> > " [mm]f(x)\to f(x_0)[/mm]   für [mm]x\to x_0[/mm] ".
>
> Hast du das bisher getan? Nein!
>  Denn dann wäre deine Frage total hinfällig.

ich habe ja erwähnt das x und [mm] x_0 [/mm] elemente aus dem Definitionsbereich sind und [mm] x\to x_0 [/mm] soll heißen x geht gegen [mm] x_0 [/mm]
wie genau muss ich das definieren?

>  
> Nichtsdestotrotz hast du Fehler in deinen Definitionen:
>  
> > falls für alle [mm]x\in[/mm] D mit [mm]x\to +-x_0[/mm] gilt
>  Wie kann einerseits [mm]x\in D[/mm], also ein Element von D, sein
> und [mm]x\to x_0[/mm] gelten, d.h. x eine Folge. Das macht keinen
> Sinn.

diesen fehler verstehe ich nicht wirklich

würde jemand die freundlichkeit besitzen und die zwei definitionen so zu verbessern, das sie richtig sind?

mein ziel war einfach 2 einfach definitionen zusammenzufassen, damit ich wenn ich später nochmal mit dem thema beschäftige, schnell in das thema wieder rein komme.

Bezug
                                        
Bezug
Stetigkeit - Limeskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Fr 03.04.2015
Autor: Gonozal_IX

Hiho,

nun mal etwas ruhiger und freundlicher:

> würde jemand die freundlichkeit besitzen und die zwei
> definitionen so zu verbessern, das sie richtig sind?

darum geht es doch gerade: Es sind keine "zwei" Definitionen, sondern ein und dieselbe. Dass du das nicht siehst, liegt leider daran, dass du den Hinweis, den fred dir gegeben hat, nicht verfolgst.

D.h. der Hinweis: "Was bedeutet denn [mm] $x\to x_0$" [/mm] ist essentiell wichtig für deine Frage und du weigerst dich bisher beharrlich, dies mal nachzuschlagen.

Daher nochmal konkret für dich der Hinweis: Schlage in deinen Unterlagen nach und schreibe konkret hier auf, wie die Kurzschreibweise "$x [mm] \to x_0 \Rightarrow [/mm] f(x) [mm] \to f(x_0)$" [/mm] definiert ist.
Man sagt salopp zwar wie du "x geht gegen [mm] x_0", [/mm] dahinter steckt aber reichlich mathematischer Tobak und den sollst du hier mal bitte präsentieren.

Und ich kann schon vorwegnehmen: Wenn du es sauber aufschreibst, landest du letztlich bei der von dir "zweiten" Definition.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]