matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesStetigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - Stetigkeit
Stetigkeit < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 Mo 14.02.2011
Autor: David90

Aufgabe
Bestimmen Sie [mm] a\in\IR, [/mm] so dass die Funktion g(x) stetig ist. Für [mm] x\not=0 [/mm] gilt [mm] \bruch{sin((\pi/5)*x)}{x} [/mm] und für x=0 gilt a.

Hallo,
ich versuch mich grad an ein paar Klausuraufgaben und scheiter immer wieder an der sch*** Stetigkeit -.- Also ich weiß dass der linksseitige und der rechtsseitige Limes gleich sein müssen, aber viel mehr auch nicht. Kann mir mal jemand nen Ansatz erklären?
Danke schon mal im Voraus:)
Gruß David

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mo 14.02.2011
Autor: kamaleonti

Hi,
> Bestimmen Sie [mm]a\in\IR,[/mm] so dass die Funktion g(x) stetig
> ist. Für [mm]x\not=0[/mm] gilt [mm]\bruch{sin((\pi/5)*x)}{x}[/mm] und für
> x=0 gilt a.

Hi,
du kannst deine Funktion besser aufschreiben (Formeleditor verwenden ;-)):
[mm] f(x)=\begin{cases}\bruch{sin((\pi/5)*x)}{x}, & x\not=0 \\ a, & x=0 \end{cases} [/mm]

>  Hallo,
>  ich versuch mich grad an ein paar Klausuraufgaben und
> scheiter immer wieder an der sch*** Stetigkeit -.- Also ich
> weiß dass der linksseitige und der rechtsseitige Limes
> gleich sein müssen, aber viel mehr auch nicht.

Das ist richtig. Setze also [mm] a=\lim_{x\to0}\bruch{sin((\pi/5)*x)}{x}. [/mm] Dieser Grenzwert existiert nur, wenn rechts und linksseitiger Grenzwert übereinstimmen (das ist hier der Fall). Bei der Berechnung des Grenzwerts kannst du L'Hospital anwenden.

Gruß

Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 Di 15.02.2011
Autor: fred97

Für $c [mm] \ne [/mm] 0$ ist

         [mm] $\bruch{sin(cx)}{x}= c*\bruch{sin(cx)}{cx}$. [/mm]

Der Grenzwert

             [mm] \limes_{t\rightarrow\ 0}\bruch{sin(t)}{t} [/mm]

dürfte bekannt sein.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]