matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetige Funktionen!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetige Funktionen!
Stetige Funktionen! < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Funktionen!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Do 18.12.2008
Autor: Mary1986

Aufgabe
Seien f,g :[mm]\IR --> \IR[/mm] stetige Funktionen mit f(x)=g(x) für alle [mm]x \in \IQ [/mm]. Zeigen Sie: Dann gilt auch f(x)=g(x) für alle [mm]x \in \IR [/mm].  

Hallo Ihr
So, irgendwie steh ich entweder auf dem Schlauch, oder die Aufgabe ist tatsächlich so einfach. Die rationalen Zahlen, sind doch durch einen Bruch der Form ganze/natürliche Zahl definiert oder? Damit muss ich doch dann nur noch zeigen, dass x element der Irrationalen Zahlen ist oder? Oder reicht es sogar wenn ich einfach das Delta-Kriterium hinschreibe? Ich mein irgendwie ist es doch logisch, dass das zweite Argument gilt... schließlich kann ich eine stetige Funktion ohne absetzten des Stiftes zeichenen, d.h. wenn x in einer Teilmenge von R enthalten ist dann ist es auch in ganz R enthalten, oder?
Wie schreib ich dann denn jetzt mathematisch auf?
Viele liebe Grüße
Mary

        
Bezug
Stetige Funktionen!: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Do 18.12.2008
Autor: fred97

Ich glaube Du hast nicht ganz verstanden, worum es geht.

Du hast 2 stetige Funktionen, die auf den rationalen Zahlen übereinstimmen. Zeigen sollst Du, dass sie auf den reellen Zahlen übereinstimmen.

Nimm also ein [mm] x_0 \in \IR. [/mm] Zu zeigen ist: [mm] f(x_0) [/mm] = [mm] g(x_0) [/mm]

Jetzt kommt das Entscheidende: es gibt eine Folge [mm] (r_n) [/mm] rationaler Zahlen mit [mm] \limes_{n\rightarrow\infty}r_n [/mm] = [mm] x_0. [/mm]

Was tut dann [mm] (f(r_n)) [/mm] und was tut [mm] (g(r_n)) [/mm] ?? (Stetigkeit nicht vergessen !!)

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]