matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetige Differenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetige Differenzierbarkeit
Stetige Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Di 08.05.2012
Autor: anabiene

Aufgabe
hey hey! Wenn ich eine funktion $ f: [mm] \IR^n\to \IR [/mm] $ gegeben habe und wissen will, ob diese 1-mal stetig differenzierbar ist,

dann versuche ich doch die partiellen ableitungen $     [mm] \frac{\partial f}{\partial x_i} [/mm] := [mm] \lim_{h\to 0} \frac{f(x_1,\ldots,x_i+h,\ldots,x_n) - f(x_1,\ldots,x_i,\ldots,x_n)}{h},\quad [/mm] i=1,...,n $ zu bilden und wenn diese existieren, jene n partiellen ableitungen auf stetigkeit zu überprüfen, oder?

LG

        
Bezug
Stetige Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Di 08.05.2012
Autor: Marcel

Hallo,

> hey hey! Wenn ich eine funktion [mm]f: \IR^n\to \IR[/mm] gegeben
> habe und wissen will, ob diese 1-mal stetig differenzierbar
> ist,
>  dann versuche ich doch die partiellen ableitungen
> [mm]\frac{\partial f}{\partial x_i} := \lim_{h\to 0} \frac{f(x_1,\ldots,x_i+h,\ldots,x_n) - f(x_1,\ldots,x_i,\ldots,x_n)}{h},\quad i=1,...,n[/mm]
> zu bilden und wenn diese existieren, jene n partiellen
> ableitungen auf stetigkeit zu überprüfen, oder?

ja (das ist äquivalent dazu - je nachdem, wie ihr 'stetig differenzierbar' für reellwertige Funktionen mehrerer reeller Veränderlicher definiert habt).

Gruß,
  Marcel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]