matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisStetig, fortlaufend stetig usw
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Stetig, fortlaufend stetig usw
Stetig, fortlaufend stetig usw < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetig, fortlaufend stetig usw: Stetigkeit und Diefferenzierb.
Status: (Frage) beantwortet Status 
Datum: 20:43 Mi 14.09.2005
Autor: slice

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


Hallo!

ich habe eine Frage im Bezug auf stetigm fortlaufend stetig, differenzierbar, stetig differenzierbar!

Ich weiß zwar, wie man das alles im Graphen sieht und erkennt, aber irgendwie wurde uns noch nicht richtig erklärt wie man das rechnerisch zeigt!
Jetzt haben wir dazu aber eine Hausaufgabe auf, deshlab wollte ich fragen ob mir einer von ecuh helfen kann!
Also wie gesagt, ich weiß was es bedeutet und wie man es erkennt!
Wär nett, wenn jemand antwortet!

        
Bezug
Stetig, fortlaufend stetig usw: Deine Aufgabe?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 Mi 14.09.2005
Autor: Loddar

Hallo slice!


Falls noch nicht geschehen: [willkommenmr] !!


Poste doch einfach mal Deine Aufgabe, denn mit einem konkreten Beispiel lässt sich das bestimmt viel besser erklären ...


Gruß
Loddar


Bezug
                
Bezug
Stetig, fortlaufend stetig usw: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 14.09.2005
Autor: slice

Naja das würde ich ja gerne machen, aber das ist ein bisschen umständlich mit 5 Aufgaben :-)
Naja ich kann ja mal eine schreiben vll. erkenn ich da ja dann die "Regel"..

hm irgendwie klappts mit der grafik nich so.. ich versuchs mal so ;-)

also f(x) = x² * sin(1/x)   für x  [mm] \not=0 [/mm]
                 0              für x=0

Bezug
        
Bezug
Stetig, fortlaufend stetig usw: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Do 15.09.2005
Autor: Britta82

Hi
Stetig bedeutet , daß du dir 2 Punkte x und y aus dem Definitionsbereich nimmst, die nah beieinander liegen und dir dann die Bilder im Wertebereich anguckst, Es ist stetig, wenn diese dann auch wieder nahe beieinander liegen, also Formel sieht das so aus:

Für alle x,y aus D mit  |x-y| < [mm] \varepsilon \Rightarrow [/mm] |f(x) - f(y)| < [mm] \delta [/mm] für [mm] \varepsilon [/mm] und [mm] \delta [/mm] > 0

Differenzierbar prüfst du mit dem Differenzenquotienten nach, der lautet:

[mm] \limes_{x\rightarrow x_{0}} \bruch{f(x) - f(x_{0})}{x - x_{0}} [/mm] = f´(x)

Du mußt dann einfach nur einsetzen und hast die Lösung für das f´(x).

Wenn die Ableitung die du errechnet hast noch stetig ist, dann ist die Funktion stetig differenzierbar.

Aus f differenzierbar folgt auch f stetig, aber nicht andersherum.

Ich weiß nicht genau, was  du mit fortlaufend stetig meinst, aber ich vermute ich kenne es unter gleichmäßig stetig du kannst es hier mal nachlesen

[]Gleichmäßige Stetigkeit

Ich hoffe, daß ich helfen konnte

LG

Britta


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]