matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenSteckbriefaufgaben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Steckbriefaufgaben" - Steckbriefaufgaben
Steckbriefaufgaben < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgaben: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:53 Di 14.10.2014
Autor: heiser16

Aufgabe
Bestimme zu den abgebildeten Graphen jeweils eine mögliche Funktionsgleichung.
Den Graph kann ich hier nicht einfügen. Es ist eine Fnktion 3. Grades. Der Graph hat einen Hochounkt H(0/0) und einen Tiefpunkt T(2/-4).

Hallo,
ich habe versucht diese Aufgabe zu lösen, und habe auch etwas raus bekommen. Aber ich habe das Gefühl, dass etwas falsch ist. Ich würde mich freuen, wenn man mir sagen könnte, wo genau mein Fehler war :)

[mm] f(x)=ax^3+bx^2+cx+d [/mm]
[mm] f(x)=3ax^2+2bx+c [/mm]
f(x)=6ax+2b

H(0/0) :
f(0)=0 -> I. c=0

Weil H(0/0) ein Hochpunkt ist:
H'(0/0) -> f'(0)=0 -> II. 3a+2b+c=0

T(2/-4):
f(2)= -4 -> III. 8a+2b+c+d

Weil T(2/-4) ein Tiefpunkt ist:
T'(2/-4) -> f'(2)= -4 -> IV. 6a+4b+c=4

I.    c=0
II.   3a+2b+c=0
III. 8a+2b+c+d= -4
IV.  6a+4b+c=4

II. nach b auflösen:
b = -1,5a

b in IV. einsetzen:
6a+4x(-1,5a)=4 -> a=4

a in IV. einsetzen:
3x4+2b=0 -> b = -6

a&b in III. einsetzen:
8x4+2x(-6)+d= -4 -> d = -24

Das wäre dann die Funktion:

[mm] f(x)=4x^3-6x^2-24 [/mm]

Danke im voraus :)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Steckbriefaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Di 14.10.2014
Autor: fred97


> Bestimme zu den abgebildeten Graphen jeweils eine mögliche
> Funktionsgleichung.
>  Den Graph kann ich hier nicht einfügen. Es ist eine
> Fnktion 3. Grades. Der Graph hat einen Hochounkt H(0/0) und
> einen Tiefpunkt T(2/-4).
>  Hallo,
>  ich habe versucht diese Aufgabe zu lösen, und habe auch
> etwas raus bekommen. Aber ich habe das Gefühl, dass etwas
> falsch ist. Ich würde mich freuen, wenn man mir sagen
> könnte, wo genau mein Fehler war :)
>  
> [mm]f(x)=ax^3+bx^2+cx+d[/mm]
>  [mm]f(x)=3ax^2+2bx+c[/mm]

Du meinst wohl [mm]f'(x)=3ax^2+2bx+c[/mm]


>  f(x)=6ax+2b

Hier sollte es lauten:  $f''(x)=6ax+2b$


>  
> H(0/0) :
>  f(0)=0 -> I. c=0

Nein ! Aus f(0)=0 folgt d=0.


>  
> Weil H(0/0) ein Hochpunkt ist:
>  H'(0/0) -> f'(0)=0 -> II. 3a+2b+c=0

Hä ? Wieso H'(0/0) ?. Kapitaler Fehler ist die Gleichung 3a+2b+c=0, denn aus f'(0)=0 folgt c=0.


>  
> T(2/-4):
>  f(2)= -4 -> III. 8a+2b+c+d

Da steht doch keine Gleichung !!! Verrechnet hast Du Dich auch. Wir wissen schon: c=d=0, also ist

f(2)=8a+4b.

D.h.:  8a+4b=-4

  

>  
> Weil T(2/-4) ein Tiefpunkt ist:
>  T'(2/-4) -> f'(2)= -4 -> IV. 6a+4b+c=4

Oje ! Was soll T' ?? f'(2)=-4 ist falsch ! Richtig: f'(2)=0.


FRED


>  
> I.    c=0
>  II.   3a+2b+c=0
>  III. 8a+2b+c+d= -4
>  IV.  6a+4b+c=4
>  
> II. nach b auflösen:
>  b = -1,5a
>  
> b in IV. einsetzen:
>  6a+4x(-1,5a)=4 -> a=4

>  
> a in IV. einsetzen:
>  3x4+2b=0 -> b = -6

>  
> a&b in III. einsetzen:
>  8x4+2x(-6)+d= -4 -> d = -24

>  
> Das wäre dann die Funktion:
>  
> [mm]f(x)=4x^3-6x^2-24[/mm]
>  
> Danke im voraus :)
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Steckbriefaufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 Di 14.10.2014
Autor: heiser16

Ok, ich habe es noch mal versucht.
Ich weiß, ich bin nicht gut in Mathe :/
Ist es diese Funktion:
[mm] f(x)=-x^3+x^2 [/mm]

Bezug
                        
Bezug
Steckbriefaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Di 14.10.2014
Autor: Steffi21

Hallo, leider stimmt die Funktion nicht

aus [mm] f(x)=a*x^3+b*x^2+c*x+d [/mm] kannst du zwei Gleichungen folgern:

(1) aus (0;0) folgt [mm] 0=a*0^3+b*0^2+c*0+d [/mm] also d=0

(2) aus (2;-4) folgt -4=8a+4b+2c+d

aus [mm] f'(x)=3a*x^2+2b*x+c [/mm] kannst du zwei Gleichungen folgern

(3) aus f'(0)=0 folgt 0=3a*0+2b*0+c also c=0

(4) aus f'(2)=0 folgt 0=3a*4+2b*2+c also 0=12a+4b+c

da c=d=0 reduziert sich alles auf das Gleichungssystem

(2) -4=8a+4b

(4) 0=12a+4b

rechne jetzt (2) minus (4)

Steffi



Bezug
                                
Bezug
Steckbriefaufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Di 14.10.2014
Autor: heiser16

Ok, ist es: [mm] f(x)=x^3-3x^2 [/mm]

Bezug
                                        
Bezug
Steckbriefaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Di 14.10.2014
Autor: Steffi21

Hallo, korrekt, Steffi

Bezug
                                                
Bezug
Steckbriefaufgaben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 Di 14.10.2014
Autor: heiser16

Jaaaa :D
Dankeschön, ich bin gerade sehr glücklich :DDD

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]