matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseStationarität cos(U)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "stochastische Prozesse" - Stationarität cos(U)
Stationarität cos(U) < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stationarität cos(U): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mi 08.05.2013
Autor: steppenhahn

Aufgabe
Sei [mm] $U\sim U[0,2\pi]$ [/mm] (Gleichverteilung auf [mm] [0,2\pi]) [/mm] und $a [mm] \in \IR$. [/mm] Sei [mm] $f:\IR \to \IR$ [/mm] eine [mm] 2\pi-periodische [/mm] Funktion.

Warum gilt [mm] $\IP^{f(U)} [/mm] = [mm] \IP^{f(U+a)}$ [/mm] ?

Hallo!

Ich überlege gerade an einem Beweis der obigen Aussage.
Es geht darum, warum $f(U)$ und $f(U+a)$ die gleiche Verteilung haben.

Anschaulich ist das logisch, weil sowohl U als auch U+a eine Zufallsvariable beschreiben, die gleichverteilt auf einem Intervall der Länge [mm] 2\pi [/mm] sind.


Allerdings scheitere ich gerade an einem formalen Beweis. Es müsste eigentlich ganz einfach sein, aber ich sehe es gerade nicht :-( Kann mir da jemand helfen?


Viele Grüße,
Stefan

        
Bezug
Stationarität cos(U): Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Mi 08.05.2013
Autor: felixf

Moin Stefan!

> Sei [mm]U\sim U[0,2\pi][/mm] (Gleichverteilung auf [mm][0,2\pi])[/mm] und [mm]a \in \IR[/mm].
> Sei [mm]f:\IR \to \IR[/mm] eine [mm]2\pi-periodische[/mm] Funktion.
>  
> Warum gilt [mm]\IP^{f(U)} = \IP^{f(U+a)}[/mm] ?
>  Hallo!
>  
> Ich überlege gerade an einem Beweis der obigen Aussage.
>  Es geht darum, warum [mm]f(U)[/mm] und [mm]f(U+a)[/mm] die gleiche
> Verteilung haben.
>  
> Anschaulich ist das logisch, weil sowohl U als auch U+a
> eine Zufallsvariable beschreiben, die gleichverteilt auf
> einem Intervall der Länge [mm]2\pi[/mm] sind.

... und da $f$ [mm] $2\pi$-periodisch [/mm] ist :)

> Allerdings scheitere ich gerade an einem formalen Beweis.
> Es müsste eigentlich ganz einfach sein, aber ich sehe es
> gerade nicht :-( Kann mir da jemand helfen?

Du musst doch zeigen, dass [mm] $\IP(U \in f^{-1}(V)) [/mm] = [mm] \IP(U \in f^{-1}(V) [/mm] - a)$ ist fuer jede Teilmenge $V [mm] \subseteq \IR$. [/mm] Wenn du $V' := [mm] f^{-1}(V)$ [/mm] setzt, ist dies aequivalent zu [mm] $\IP(U \in [/mm] V') = [mm] \IP(U \in [/mm] V' - a)$ fuer jede [mm] $2\pi$-periodische [/mm] Menge $V'$ (bedeutet: aus $x [mm] \in [/mm] V'$ folgt $x + k 2 [mm] \pi \in [/mm] V'$ fuer alle $k [mm] \in \IZ$). [/mm]

Schreibe jetzt $a = 2 [mm] \pi [/mm] k + b$ mit $0 [mm] \le [/mm] b < 2 [mm] \pi$ [/mm] und $k [mm] \in \IZ$. [/mm] (Dies geht auf genau eine Art und Weise.) Dann ist $V' - a = V' - 2 [mm] \pi [/mm] k - b = V' - b$. Weiterhin ist [mm] $\IP(U \in [/mm] V') = [mm] \frac{1}{2\pi} \int_0^{2\pi} 1_{V'}(t) \; [/mm] dt$ und [mm] $\IP(U \in [/mm] V' - b) = [mm] \IP(U [/mm] + b [mm] \in [/mm] V') [mm] \frac{1}{2\pi} \int_b^{2\pi+b} 1_{V'}(t) \; [/mm] dt$.

Teile das zweitere Integral nun in die Teile [mm] $\int_b^{2 \pi}$ [/mm] und [mm] $\int_{2 \pi}^{2 \pi + b}$ [/mm] auf und verwende, dass $V'$ [mm] $2\pi$-periodisch [/mm] ist. Dann siehst du, dass das zweite Integral gleich dem ersten ist.

LG Felix


Bezug
                
Bezug
Stationarität cos(U): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:28 Mi 08.05.2013
Autor: steppenhahn

Danke Felix,

ich denke damit bekomme ich es hin :)

Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]