matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationStationäre Punkte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Stationäre Punkte
Stationäre Punkte < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stationäre Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Di 07.08.2012
Autor: schneidross

Aufgabe
Geben Sie die stationären Punkte der Funktion
$ f(y) = [mm] \integral_{0}^{y - 1}{(x - 3)(x + 2)(x + 1) e^{-x^2} dx} [/mm] $,
an. Liegen Maxima oder Minima vor? Die Funktionswerte brauchen Sie nicht zu berechnen!


Hallo zusammen.

Meine bisherige Vorgehensweise lautet wie folgt. Zunächst wende ich den verallgemeinerten Hauptsatz der Differential- und Integralrechnung an:
$ G(x) = [mm] \integral_{a(x)}^{b(x)}{f(t) dt} \Rightarrow [/mm] G'(x) = f(b(x))b'(x) - f(a(x))a'(x) $.
Also in disem Fall:
[mm] f(y) = \integral_{0}^{y - 1}{(x - 3)(x + 2)(x + 1) e^{-x^2} dx} [/mm]
[mm] \Rightarrow f'(y) = ((y - 1) - 3)((y - 1) + 2)((y - 1) + 1) e^{-(y - 1)^2} * 1 - 0 [/mm]
[mm] \gdw f'(y) = (y - 4)(y + 1)(y + 0) e^{-(y - 1)^2} [/mm].
Mit [mm] f'(y) = 0 [/mm] folgt:
$ [mm] y_{1} [/mm] = 4 $, $ [mm] y_{2} [/mm] = -1 $, $ [mm] y_{3} [/mm] = 0 $.
Somit wurden drei Stationärstellen gefunden.

Nun zu meinen eigentlichen Fragen:
1) Liegt an einem stationären Punkt immer ein Extremum vor? Ich würde hier auf 'nein' tippen, weil die Bedingung für einen stationären Punkt (nämlich $ f'(x) = 0 $) nur ein notwendiges und kein hinreichendes Kriterium für ein Extremum ist.

2) Wie würde ich also an dieser Stelle vorgehen um zu erkennen ob, und ja an welchen der stationären Punkte welche Art des Extremums auftritt ohne große Akrobatik zu betreiben? Der Kontext der Aufgabe suggeriert mir, dass das ein leichtes Unterfangen sein sollte.

Vielen Dank für die Aufmerksamkeit, ich freue mich auf Euer Interesse.

        
Bezug
Stationäre Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Di 07.08.2012
Autor: MathePower

Hallo schneidross,

> Geben Sie die stationären Punkte der Funktion
>  [mm]f(y) = \integral_{0}^{y - 1}{(x - 3)(x + 2)(x + 1) e^{-x^2} dx} [/mm],
>  
> an. Liegen Maxima oder Minima vor? Die Funktionswerte
> brauchen Sie nicht zu berechnen!
>  
> Hallo zusammen.
>  
> Meine bisherige Vorgehensweise lautet wie folgt. Zunächst
> wende ich den verallgemeinerten Hauptsatz der Differential-
> und Integralrechnung an:
>  [mm]G(x) = \integral_{a(x)}^{b(x)}{f(t) dt} \Rightarrow G'(x) = f(b(x))b'(x) - f(a(x))a'(x) [/mm].
>  
> Also in disem Fall:
>  [mm]f(y) = \integral_{0}^{y - 1}{(x - 3)(x + 2)(x + 1) e^{-x^2} dx}[/mm]
>  
> [mm]\Rightarrow f'(y) = ((y - 1) - 3)((y - 1) + 2)((y - 1) + 1) e^{-(y - 1)^2} * 1 - 0[/mm]
>  
> [mm]\gdw f'(y) = (y - 4)(y + 1)(y + 0) e^{-(y - 1)^2} [/mm].
>  Mit
> [mm]f'(y) = 0[/mm] folgt:
>  [mm]y_{1} = 4 [/mm], [mm]y_{2} = -1 [/mm], [mm]y_{3} = 0 [/mm].
>  Somit wurden drei
> Stationärstellen gefunden.
>  


[ok]


> Nun zu meinen eigentlichen Fragen:
>  1) Liegt an einem stationären Punkt immer ein Extremum
> vor? Ich würde hier auf 'nein' tippen, weil die Bedingung
> für einen stationären Punkt (nämlich [mm]f'(x) = 0 [/mm]) nur ein
> notwendiges und kein hinreichendes Kriterium für ein
> Extremum ist.
>  


Ja, da tippst Du richtig.


> 2) Wie würde ich also an dieser Stelle vorgehen um zu
> erkennen ob, und ja an welchen der stationären Punkte
> welche Art des Extremums auftritt ohne große Akrobatik zu
> betreiben? Der Kontext der Aufgabe suggeriert mir, dass das
> ein leichtes Unterfangen sein sollte.
>  


Das kannst Du über den Vorzeichenwechel von f'(y) machen.


> Vielen Dank für die Aufmerksamkeit, ich freue mich auf
> Euer Interesse.


Grus
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]