Starkes Gesetz der großen Zahl < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:27 Mo 18.03.2013 | Autor: | icarus89 |
Aufgabe | Sei [mm] (X_{n})_{n} [/mm] eine Folge unabhängiger, reeller Zufallsvariablen und [mm] (a_{n})_{n} [/mm] eine aufsteigende Folge positiver Zahlen, sodass
[mm] \sum_{n} \frac{Var(X_{n})}{a_{n}^{2}} [/mm] endlich ist. Dann konvergiert
[mm] \frac{1}{a_{n}} \sum_{j=1}^{n} [/mm] ( [mm] X_{j} [/mm] - [mm] \mathbb{E}(X_{j}) [/mm] ) fast sicher gegen 0. |
Hallo,
ich habe eine Frage zu dem Beweis davon. Hierbei wird das sogenannte Kroneckerlemma verwendet:
Sei [mm] (x_{n})_{n} [/mm] eine Folge reeller Zahlen, sodass die Reihe über sie endlich ist und sei [mm] (a_{n})_{n} [/mm] eine aufsteigende Folge, sodass auch die Reihe über [mm] \frac{x_{j}}{a_{j}} [/mm] endlich ist. Dann konvergiert [mm] \frac{1}{a_{n}} \sum_{j=1}^{n} x_{j} [/mm] gegen 0.
So nun zum Beweis: Es wird aus einem Korollar zum Satz von Levy (fast sicher genau dann wenn stochastisch bei Partialsummen unabh. ZVn) gefolgert, dass der Limes [mm] \sum_{j=1}^{n} \frac{1}{a_{j}} [/mm] ( [mm] X_{j} [/mm] - [mm] \mathbb{E}(X_{j})) [/mm] fast sicher existiert (soweit so gut). Dann steht da nur, dass das Kroneckerlemma angewendet auf [mm] \frac{1}{a_{j}} [/mm] ( [mm] X_{j} [/mm] - [mm] \mathbb{E}(X_{j})) [/mm] liefern würde, dass [mm] \frac{1}{a_{n}} \sum_{j=1}^{n} [/mm] ( [mm] X_{j} [/mm] - [mm] \mathbb{E}(X_{j}) [/mm] ) fast sicher gegen 0 gehen würde...
Das sehe ich aber nicht ein... Folgt aus dem Lemma nicht nur
[mm] \frac{1}{a_{n}} \sum_{j=1}^{n} \frac{1}{a_{j}}( X_{j} [/mm] - [mm] \mathbb{E}(X_{j}) [/mm] ) fast sicher gegen 0?
|
|
|
|
Hast wahrscheinlich falsch mitgeschrieben.
Kroneckerlemma besagt ja zu den ganzen Voraussetzungen.
Dann konvergiert [mm] \frac{1}{a_{n}} \sum_{j=1}^{n}a_{j} x_{j} [/mm] gegen 0.
Setze [mm] x_{j}= \frac{1}{a_{j}}( X_{j} [/mm] - [mm] \mathbb{E}(X_{j}) [/mm] ) und wir sind fertig.
|
|
|
|