matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraStandartbasis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Standartbasis
Standartbasis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standartbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Do 14.06.2007
Autor: trivialesmathe

Aufgabe
Es  sei a= [mm] (v_{1}, v_2, v_3)mit v_1 =\vektor{1\\1 \\ 0}, v_2=\vektor{0\\1\\1}, v_3= \vektor{1\\1 \\ 1} [/mm] und f: [mm] \IR³-> \IR³ [/mm] linera mit [mm] f(v_1) [/mm] = [mm] \vektor{1\\-1\\0}, f(v_2)=\vektor{1\\0\\-1} [/mm] und [mm] f(v_3)=\vektor{0\\1\\-1} [/mm] geg.
Weiter sei e= [mm] (e_1, e_2, e_3) [/mm] die Standartbasis des [mm] \IR³. [/mm]
Berechnen Sie A= [mm] _eM_a(f), [/mm] B= [mm] _eM_e(f), [/mm] C= [mm] _aM_e(f) [/mm] und D= [mm] _aM_a(f). [/mm]

Bei dieser Aufgabe weiß ich auch nicht wie die gehen soll. Könnt ihr mir hier auch weiterhelfen? Wäre echt nett. Danke...

        
Bezug
Standartbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Do 14.06.2007
Autor: angela.h.b.


> Es  sei a= [mm](v_{1}, v_2, v_3)mit v_1 =\vektor{1\\1 \\ 0}, v_2=\vektor{0\\1\\1}, v_3= \vektor{1\\1 \\ 1}[/mm]
> und f: [mm]\IR³-> \IR³[/mm] linera mit [mm]f(v_1)[/mm] = [mm]\vektor{1\\-1\\0}, f(v_2)=\vektor{1\\0\\-1}[/mm]
> und [mm]f(v_3)=\vektor{0\\1\\-1}[/mm] geg.
>  Weiter sei e= [mm](e_1, e_2, e_3)[/mm] die Standartbasis des [mm]\IR³.[/mm]
>  Berechnen Sie A= [mm]_eM_a(f),[/mm] B= [mm]_eM_e(f),[/mm] C= [mm]_aM_e(f)[/mm] und D=
> [mm]_aM_a(f).[/mm]

Hallo,

es heißt Standar[d]!


Wenn ich die darstellende Matrix einer linearen Abbildung f suche,
welche mir angewendet auf Vektoren in Koordinaten bzgl. einer Basis [mm] A=(a_1,...a_n) [/mm]
Vektoren in Koordinaten bzgl. dieser Basis A ausgibt,

benötige ich [mm] f(a_i) [/mm] als Linearkombination von [mm] a_1, ...a_n. [/mm]

Die entsprechenden Koeffizienten kommen dann in die i-te Spalte.


Wenn ich die darstellende Matrix einer linearen Abbildung f suche,
welche mir angewendet auf Vektoren in Koordinaten bzgl. einer Basis [mm] A=(a_1,...a_n) [/mm]
Vektoren in Koordinaten bzgl. einer Basis [mm] B=(b_1, ...,b_n) [/mm] ausgibt,

benötige ich [mm] f(a_i) [/mm] als Linearkombination von [mm] b_1, ...b_n. [/mm]

Die entsprechenden Koeffizienten kommen dann in die i-te Spalte.

Gruß v. Angela





Bezug
                
Bezug
Standartbasis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:40 Mo 18.06.2007
Autor: D-C

Ist das so richtig !? :

e=(e1,e2,e3)
a=(v1,v2,v3)

A= $ [mm] _eM_a(f), [/mm] $

A= [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm]

= [mm] \alpha1 [/mm] e1 +  [mm] \alpha2 [/mm] e2 +  [mm] \alpha3 [/mm] e3
= [mm] \alpha1 \vektor{1 \\ 0 \\ 0} [/mm] + [mm] \alpha2 \vektor{0 \\ 1 \\ 0} [/mm] + [mm] \alpha3 \vektor{0 \\ 0 \\ 1} [/mm]

= [mm] \vektor{\alpha1 \\ \alpha2 \\ \alpha3} [/mm]

[mm] =\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } \vektor{\alpha1 \\ \alpha2 \\ \alpha3} [/mm]

= [mm] (\alpha1 [/mm] 1 + [mm] \alpha2 [/mm] 0 + [mm] \alpha3 [/mm] 0 , [mm] \alpha1 [/mm] 0 + [mm] \alpha2 [/mm] 1 + [mm] \alpha3 [/mm] 0,
[mm] \alpha1 [/mm] 0 + [mm] \alpha2 [/mm] 0 + [mm] \alpha3 [/mm] 0)

[mm] =\alpha1 [/mm] v1 + [mm] \alpha2 [/mm] v2 + [mm] \alpha3 [/mm] v3





B= $ [mm] _eM_e(f), [/mm] $

B= [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm]

= [mm] \alpha1 [/mm] e1 +  [mm] \alpha2 [/mm] e2 +  [mm] \alpha3 [/mm] e3
= [mm] \alpha1 \vektor{1 \\ 0 \\ 0} [/mm] + [mm] \alpha2 \vektor{0 \\ 1 \\ 0} [/mm] + [mm] \alpha3 \vektor{0 \\ 0 \\ 1} [/mm]

= [mm] \vektor{\alpha1 \\ \alpha2 \\ \alpha3} [/mm]

=   [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } \vektor{\alpha1 \\ \alpha2 \alpha3 } [/mm]

= [mm] (\alpha1 [/mm] 1 + [mm] \alpha2 [/mm] 0 + [mm] \alpha3 [/mm] 0 , [mm] \alpha1 [/mm] 0 + [mm] \alpha2 [/mm] 1 + [mm] \alpha3 [/mm] 0,
[mm] \alpha1 [/mm] 0 + [mm] \alpha2 [/mm] 0 + [mm] \alpha3 [/mm] 0)

[mm] =\alpha1 [/mm] e1 + [mm] \alpha2 [/mm] e2 + [mm] \alpha3 [/mm] e3






C=  $ [mm] _aM_e(f), [/mm] $

C= [mm] \pmat{ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 } [/mm]

= [mm] \alpha1 [/mm] v1 +  [mm] \alpha2 [/mm] v2 +  [mm] \alpha3 [/mm] v3
= [mm] \alpha1 \vektor{1 \\ 1 \\ 0} [/mm] + [mm] \alpha2 \vektor{0 \\ 1 \\ 1} [/mm] + [mm] \alpha3 \vektor{1 \\ 1 \\ 1} [/mm]

= [mm] \vektor{ \alpha1 + \alpha3 \\ \alpha1 + \alpha2 + \alpha3 \\ \alpha2 + \alpha3 } [/mm]

= [mm] \pmat{ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 } \vektor{ \alpha1 \\ \alpha2 \\ \alpha3 } [/mm]

= [mm] (\alpha1 [/mm] 1 + [mm] \alpha2 [/mm] 0 + [mm] \alpha3 [/mm] 1 , [mm] \alpha1 [/mm] 1 + [mm] \alpha2 [/mm] 1 + [mm] \alpha3 [/mm] 1,
[mm] \alpha1 [/mm] 0 + [mm] \alpha2 [/mm] 1 + [mm] \alpha3 [/mm] 1)

=( [mm] \alpha1 [/mm] + [mm] \alpha3 [/mm] )e1 + ( [mm] \alpha1 [/mm] + [mm] \alpha2 [/mm] + [mm] \alpha3 [/mm] )e2 + ( [mm] \alpha2 [/mm] + [mm] \alpha3) [/mm] e3





D= $ [mm] _aM_e(f), [/mm] $

D= [mm] \pmat{ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 } [/mm]

= [mm] \alpha1 [/mm] v1 +  [mm] \alpha2 [/mm] v2 +  [mm] \alpha3 [/mm] v3
= [mm] \alpha1 \vektor{1 \\ 1 \\ 0} [/mm] + [mm] \alpha2 \vektor{0 \\ 1 \\ 1} [/mm] + [mm] \alpha3 \vektor{1 \\ 1 \\ 1} [/mm]

= [mm] \vektor{\alpha1 + \alpha3 \\ \alpha1 + \alpha2 + \alpha3 \\ \alpha2 + \alpha3} [/mm]

= [mm] \pmat{ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 } \vektor{\alpha1 \\ \alpha2 \\ \alpha3} [/mm]

= [mm] (\alpha1 [/mm] 1 + [mm] \alpha2 [/mm] 0 + [mm] \alpha3 [/mm] 1 , [mm] \alpha1 [/mm] 1 + [mm] \alpha2 [/mm] 1 + [mm] \alpha3 [/mm] 1,
[mm] \alpha1 [/mm] 0 + [mm] \alpha2 [/mm] 1 + [mm] \alpha3 [/mm] 1)

=( [mm] \alpha1 [/mm] + [mm] \alpha3 [/mm] )v1 + ( [mm] \alpha1 [/mm] + [mm] \alpha2 [/mm] + [mm] \alpha3 [/mm] )v2 + ( [mm] \alpha2 [/mm] + [mm] \alpha3) [/mm] v3



Gruß

D-C

Bezug
                        
Bezug
Standartbasis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Mo 18.06.2007
Autor: angela.h.b.

Hallo,

ich fürchte, daß da einiges nicht richtig ist.

Bevor ich mich über Dein Post hermache, wäre es schön, wenn Du Deine Rechnungen mit ein paar Worten kommentieren würdest, damit ich Dir sinnvoll helfen kann.

Könntest Du z.B. in Worten beschreiben, was die Matrix [mm] _eM_a(f) [/mm] für Dich tun soll? (ch frage u.a. deshalb, weil für diese Dinge die Bezeichnungen so uneinheitlich sind, und weil ich nicht unnötig Verwirrung stiften möchte.)

Was bezweckst Du mit den Rechnungen, die auf die Mitteilung der jeweiligen Matrix folgen?

Gruß v. Angela





Bezug
                        
Bezug
Standartbasis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Mo 18.06.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]