matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieStandardnormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Standardnormalverteilung
Standardnormalverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standardnormalverteilung: Schritte bei Substitution
Status: (Frage) beantwortet Status 
Datum: 09:13 Mi 22.07.2015
Autor: magics

Aufgabe
Allgemein gilt:

P(X [mm] \le [/mm] x) = [mm] \bruch{1}{\delta \wurzel[]{2\pi}}\integral_{- \infty}^{x}{e^{- \bruch{1}{2}(\bruch{t - \mu}{\delta})^2}dt} [/mm] = [mm] \bruch{1}{\wurzel[]{2\pi}}\integral_{- \infty}^{\bruch{t - \mu}{\delta}}{e^{- \bruch{1}{2}(u)^2}du} [/mm] = [mm] Phi(\bruch{t - \mu}{\delta}) [/mm]

Phi(x) soll hier die Φ - Funktion für die Standardnormalverteilung sein.

Hallo,

Wie passiert es, dass aus dem Faktor [mm] \bruch{1}{\delta \wurzel[]{2\pi}} [/mm] nach der Substitution [mm] \bruch{1}{\wurzel[]{2\pi}} [/mm] wird?

lg
magics

        
Bezug
Standardnormalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Mi 22.07.2015
Autor: fred97


> Allgemein gilt:
>  
> P(X [mm]\le[/mm] x) = [mm]\bruch{1}{\delta \wurzel[]{2\pi}}\integral_{- \infty}^{x}{e^{- \bruch{1}{2}(\bruch{t - \mu}{\delta})^2}dt}[/mm]
> = [mm]\bruch{1}{\wurzel[]{2\pi}}\integral_{- \infty}^{\bruch{t - \mu}{\delta}}{e^{- \bruch{1}{2}(u)^2}du}[/mm]
> = [mm]Phi(\bruch{t - \mu}{\delta})[/mm]
>  
> Phi(x) soll hier die Φ - Funktion für die
> Standardnormalverteilung sein.
>  Hallo,
>  
> Wie passiert es, dass aus dem Faktor [mm]\bruch{1}{\delta \wurzel[]{2\pi}}[/mm]
> nach der Substitution [mm]\bruch{1}{\wurzel[]{2\pi}}[/mm] wird?
>  
> lg
>  magics


Man substituiert [mm] $u=\bruch{t-\mu}{\delta}$. [/mm]

Dann:  [mm] \bruch{du}{dt}=\bruch{1}{\delta}, [/mm]

also

     $dt= [mm] \delta [/mm] du$

FRED

Bezug
                
Bezug
Standardnormalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:42 Mi 22.07.2015
Autor: magics

Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]