matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete OptimierungStandardmaximierungsproblem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Diskrete Optimierung" - Standardmaximierungsproblem
Standardmaximierungsproblem < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standardmaximierungsproblem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:01 So 19.01.2014
Autor: Mathics

Aufgabe
Betrachten Sie das Standardmaximierungsproblem

Max c^Tx, Nebenbedingung: A*x [mm] \le [/mm] b, mit A [mm] \in \IR^{nxn}, [/mm] b [mm] \in \IR^{nx1}m [/mm] c [mm] \in \IR^{nx1} [/mm] und x [mm] \ge [/mm] 0

das mit dem Simplex-Algorithmus gelöst werden soll.

Nehmen Sie zu der folgenden Aussage begründet Stellung:

"Unter der Menge der zulässigen Lösungen lässt sich jederzeit mindestens eine optimale Lösung identifizieren!"

Das ursprüngliche Maximierungsproblem soll nun um die folgenden Nebenbedingungen erweitert werden:

A*x [mm] \le [/mm] b+e, mit e [mm] \in \IR^{nx1} [/mm] und e = [mm] (1...1)^T [/mm]

Erläutern Sie, welchen Einfluss diese Erweiterung auf die Optimallösung des ursprünglichen Problem aus Teilaufgabe a) hat!

Hallo,

zu der ersten Aussage lässt sich sagen, dass b nicht eingeschränkt ist und folglich es unendliche viele Lösungen gibt, womit der Zielfunktionswert beliebig erhöht werden kann.

Wenn b [mm] \ge [/mm] 0 gelten würde, hätte man dann eine eindeutige Lösung? bzw. muss erst c eingeschränkt sein, damit es eine eindeutige Lösung gibt?


Zu dem zweiten Aufgabenteil war mein erster Gedanke, dass dadurch der optimale Wert um e erhöht wird, aber in den Lösungen steht, dass dies kein Einfluss darauf hat. Wieso nicht?

LG

        
Bezug
Standardmaximierungsproblem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Di 21.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]