matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Stammfunktion finden
Stammfunktion finden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion finden: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:36 Mi 03.02.2010
Autor: sunny9

Hallo,

ich versuche grade die ganze Zeit auf eine Umformung zu kommen, um eine Aufgabe lösen zu können, komm aber einfach nicht drauf. Die Lösung habe ich.

Also die Aufgabe ist:

[mm] \int_{0}^{-ln(2)} \bruch{e^{(4x)}}{e^{(2x)}+3}, [/mm] dx

Alles was in Klammern hinter dem e steht soll hoch sein, er macht das bei mir grad nicht, oder ich weiß nicht wie das geht. also e hoch 4x und e hoch 2x.

Vorgegeben ist, dass [mm] t=e^{(2x)}+3 [/mm] sein soll

Lösung der Umformung ist erstmal: [mm] \int_{4}^{3,25} \bruch{1}{2}-\bruch{3}{2t}, [/mm] dx

Ich hab jetzt erstmal t nach x umgestellt: [mm] g(t)=x=-\bruch{ln(3)}{2}+\bruch{ln(t)}{2} [/mm]
dann hab ich diese Funktion abgeleitet: [mm] g'(x)=\bruch{1}{2t} [/mm]
und eingesetzt:

[mm] \int_{4}^{3,25} \bruch{e^{(4(-\bruch{ln(3)}{2}+\bruch{ln(t)}{2}))}}{t}*\bruch{1}{2t}, [/mm] dt

nach weiterem Umformen komme ich [mm] auf:\int_{4}^{3,25} \bruch{-3+t}{2t}*\bruch{1}{2t} [/mm] dt

Wennn ich das noch umschreibe, kann man es besser mit der Lösung [mm] vergleichen:\int_{4}^{3,25} (\bruch{-3}{2t}+\bruch{1}{2})*\bruch{1}{2t} [/mm] dt
Ich habe also [mm] *\bruch{1}{2t} [/mm] irgendwie zu viel, aber ich komm nicht drauf, wo das in der Lösung hin verschwunden ist.Ich wäre sehr dankbar, wenn mir irgendjemand helfen könnte.
Vielen Dank schon mal und herzliche Grüße

        
Bezug
Stammfunktion finden: Exponenten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:39 Mi 03.02.2010
Autor: angela.h.b.


> Alles was in Klammern hinter dem e steht soll hoch sein, er
> macht das bei mir grad nicht, oder ich weiß nicht wie das
> geht. also e hoch 4x und e hoch 2x.

Hallo,

setze alles, was in den Exponenten soll, in geschweifte Klammern. Dann klappt's.

Du kannst Dein Post übrigens bearbeiten, wenn Du den entsprechenden Button klickst.

Gruß v. Angela

Bezug
        
Bezug
Stammfunktion finden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Mi 03.02.2010
Autor: angela.h.b.


> Hallo,
>  
> ich versuche grade die ganze Zeit auf eine Umformung zu
> kommen, um eine Aufgabe lösen zu können, komm aber
> einfach nicht drauf. Die Lösung habe ich.
>  
> Also die Aufgabe ist:
>  
> [mm]\int_{0}^{-ln(2)} \bruch{e^{(4x)}}{e^{(2x)}+3},[/mm] dx
>  
> Alles was in Klammern hinter dem e steht soll hoch sein, er
> macht das bei mir grad nicht, oder ich weiß nicht wie das
> geht. also e hoch 4x und e hoch 2x.
>  
> Vorgegeben ist, dass [mm]t=e^{(2x)}+3[/mm] sein soll
>  
>               Lösung der Umformung ist erstmal: [mm]\int_{4}^{3,25} \bruch{1}{2}-\bruch{3}{2t},[/mm] dt
>  
> Ich hab jetzt erstmal t nach x umgestellt:
> [mm]g(t)=x=-\bruch{ln(3)}{2}+\bruch{ln(t)}{2}[/mm]


Hallo,

und dabei ist was schiefgegangen:

[mm] t=e^{(2x)}+3[/mm] [/mm]

==>

t-3=e^2x

==>

ln(t-3)=2x

==>

[mm] x=\bruch{ln(t-3)}{2} [/mm]

Beachte: es ist [mm] ln(t-3)\not=ln(t)- [/mm] ln(3).

Fürs weitere Vorgehen noch ein Tip: es ist [mm] e^{4x}=(e^{2x})^2. [/mm] Damit ist das Einsetzen im Zähler bequemer, weil man sich das Gewurschtel mit dem ln sparen kann.

Gruß v. Angela




>  dann hab ich diese Funktion abgeleitet:
> [mm]g'(x)=\bruch{1}{2t}[/mm]
>  und eingesetzt:
>  
> [mm]\int_{4}^{3,25} \bruch{e^{(4(-\bruch{ln(3)}{2}+\bruch{ln(t)}{2}))}}{t}*\bruch{1}{2t},[/mm]
> dt
>  
> nach weiterem Umformen komme ich [mm]auf:\int_{4}^{3,25} \bruch{-3+t}{2t}*\bruch{1}{2t}[/mm]
> dt
>  
> Wennn ich das noch umschreibe, kann man es besser mit der
> Lösung [mm]vergleichen:\int_{4}^{3,25} (\bruch{-3}{2t}+\bruch{1}{2})*\bruch{1}{2t}[/mm]
> dt
>  Ich habe also [mm]*\bruch{1}{2t}[/mm] irgendwie zu viel, aber ich
> komm nicht drauf, wo das in der Lösung hin verschwunden
> ist.Ich wäre sehr dankbar, wenn mir irgendjemand helfen
> könnte.
>  Vielen Dank schon mal und herzliche Grüße


Bezug
                
Bezug
Stammfunktion finden: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:05 Mi 03.02.2010
Autor: sunny9

Vielen lieben Dank, endlich verstehe ich wo der Fehler liegt! Ich hab schon ewig dran rumgebastelt und jetzt ists mir endlich klar...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]