matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenStammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Stammfunktion
Stammfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:03 Di 10.02.2009
Autor: Jule_

Aufgabe
Geben Sie für [mm] f(x)=3*(x^2-4e^{-2x}) [/mm] eine Stammfunktion an.

Ohne die 3 vor der Klammer hätte ich mit der Aufgabe kein Problem, aber so schon.

[mm] F(x)=3x(\bruch{1}{3}x^3+2e^{-2x}) [/mm] ist bestimmt nicht richtig!!

        
Bezug
Stammfunktion: konstanter Faktor
Status: (Antwort) fertig Status 
Datum: 17:04 Di 10.02.2009
Autor: Roadrunner

Hallo Jule!


Es handelt sich hier um einen konstanten Faktor, welcher beim Integrieren (wie beim Ableiten) erhalten bleibt.


Gruß vom
Roadrunner


Bezug
                
Bezug
Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 Di 10.02.2009
Autor: Jule_

...ich glaube ich sollte mal ne Pause machen :-(

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]