matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunkt. vs. Integralfunkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Stammfunkt. vs. Integralfunkt.
Stammfunkt. vs. Integralfunkt. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunkt. vs. Integralfunkt.: Erklärungsbedarf
Status: (Frage) beantwortet Status 
Datum: 16:59 Di 27.02.2007
Autor: Freak_Master_Jo

Servus und hallo!

Ich hab ein kleines Verständnisproblem.
Jede Integralfunktion einer Funktion f ist ja bekanntlich eine Stammfunktion zu f.
Nur ist nicht jede Stammfunktion zu f gleichzeitig eine Integralfunktion zu f.
Wie man das rechnerisch feststellt ist mir klar.
Nur, wie muss man sich das vorstellen?

Als Beispiel:
F(t) = t²/4 + 5
f(t) = t/2
[mm] \integral_{a}^{x}{f(t) dt}=x²/4-a²/4 [/mm]
hier gibt es also kein a, sodass die Integralfunktion gleich der Stammfunktion wäre.
Wie stellt man sich das graphisch vor?

Danke für die Antwort


        
Bezug
Stammfunkt. vs. Integralfunkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Di 27.02.2007
Autor: Zwerglein

Hi, Jo,

> Ich hab ein kleines Verständnisproblem.
>  Jede Integralfunktion einer Funktion f ist ja bekanntlich
> eine Stammfunktion zu f.
>  Nur ist nicht jede Stammfunktion zu f gleichzeitig eine
> Integralfunktion zu f.
>  Wie man das rechnerisch feststellt ist mir klar.
>  Nur, wie muss man sich das vorstellen?
>  
> Als Beispiel:
> F(t) = t²/4 + 5
>  f(t) = t/2
>  [mm]\integral_{a}^{x}{f(t) dt}[/mm] = x²/4 - a²/4

So wie Du das schreibst, ist das aber weder Stamm- noch Integralfunktion zu f, denn Dein f hat als unabhängige Variable den Buchstaben t, die Integralfunktion aber das x.
Funktion und Stammfunktion müssen aber wenigstens DIESELBE VARIABLE aufweisen!

Daher: f(x) = [mm] \bruch{x}{2} [/mm]
F(x) =  [mm] \bruch{x^{2}}{4} [/mm] + 5

>  hier gibt es also kein a, sodass die Integralfunktion
> gleich der Stammfunktion wäre.
>  Wie stellt man sich das graphisch vor?

Die Stammfunktionen Deiner Funktion f haben ja folgendes Aussehen:

[mm] F_{c}(x) [/mm] =  [mm] \bruch{x^{2}}{4} [/mm] + c

Das ergibt graphisch eine Menge von Parabeln, die im KoSy gegeneinander nach oben oder unten verschoben sind.
Diejenigen Parabeln, die die x-Achse schneiden oder berühren,
also diejenigen, die mindestens 1 Nullstelle haben,
sind GLEICHZEITIG Graphen von INTEGRALFUNKTIONEN.
Diejenigen aber, die vollständig oberhalb der x-Achse liegen und daher keine Nullstelle aufweisen, sind NUR Graphen von Stammfunktionen, aber NICHT von Integralfunktionen.

MERKE: Jede Integralfunktion hat innerhalb der Definitionsmenge mindestens 1 Nullstelle!

mfG!
Zwerglein


Bezug
                
Bezug
Stammfunkt. vs. Integralfunkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Di 27.02.2007
Autor: Freak_Master_Jo

Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]