matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfkt d Partialbruchzerlegu
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Stammfkt d Partialbruchzerlegu
Stammfkt d Partialbruchzerlegu < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfkt d Partialbruchzerlegu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Fr 13.02.2009
Autor: nana007

Aufgabe
[mm] \integral_{}^{} \bruch{2}{(x-1)^2 (x-3)} \, [/mm] dx  

ich soll die stammfunktion unter anwendung der partialbruchzerlegung ermitteln.

bin mir aber nicht sicher, ob das der richtige ansatz ist:
2 = [mm] \bruch{A}{(x-1)^2} [/mm] + [mm] \bruch{B}{(x-3)} [/mm]

oder bin ich da total verkehrt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfkt d Partialbruchzerlegu: Korrektur
Status: (Antwort) fertig Status 
Datum: 13:27 Fr 13.02.2009
Autor: Roadrunner

Hallo nana,

[willkommenmr] !!


Deine MBPartialbruchzerlegung ist nicht korrekt. Diese muss lauten:
[mm] $$\bruch{A}{x-1}+\bruch{B}{(x-1)^2}+\bruch{C}{x-3} [/mm] \ = \ [mm] \bruch{2}{(x-1)^2*(x-3)}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Stammfkt d Partialbruchzerlegu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Fr 13.02.2009
Autor: nana007

und der nächste schritt wäre wie folgt?:

[mm] \bruch{A(x-1)^2)+C(x-1)(x-3)+ B(x-1)}{(x-1)^2(x-3)} [/mm]


Bezug
                        
Bezug
Stammfkt d Partialbruchzerlegu: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Fr 13.02.2009
Autor: schachuzipus

Hallo nana007,

> und der nächste schritt wäre wie folgt?:
>  
> [mm]\bruch{A(x-1)^2)+C(x-1)(x-3)+ B(x-1)}{(x-1)^2(x-3)}\<[/mm]
>  

Nein, du musst doch entsprechend Roadrunners Ansatz wie folgt erweitern, damit du auf den Hauptnenner [mm] $(x-1)^2\cdot{}(x-3)$ [/mm] kommst:

[mm] $\bruch{2}{(x-1)^2\cdot{}(x-3)} [/mm] \ = \ [mm] \bruch{A}{x-1}+\bruch{B}{(x-1)^2}+\bruch{C}{x-3}$ [/mm]

[mm] $=\bruch{A\cdot{}\blue{(x-1)\cdot{}(x-3)}}{(x-1)\cdot{}\blue{(x-1)(x-3)}}+\bruch{B\cdot{}\blue{(x-3)}}{(x-1)^2\cdot{}\blue{(x-3)}}+\bruch{C\cdot{}\blue{(x-1)^2}}{(x-3)\cdot{}\blue{(x-1)^2}}$ [/mm]

[mm] $=\bruch{A\cdot{}\blue{(x-1)\cdot{}(x-3)}+B\cdot{}\blue{(x-3)}+C\cdot{}\blue{(x-1)^2}}{(x-1)^2\cdot{}(x-3)}$ [/mm]

Nun im Zähler ausmultiplizieren und dann einen Koeffizientenvergleich mit [mm] $\frac{2}{(x-1)^2(x-3)}=\frac{0\cdot{}x^2+0\cdot{}x+2}{(x-1)^2(x-3)}$ [/mm] machen


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]