Spin im Magnetfeld < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Die Wechselwirkung des Spins eines Elektrons mit einem äußeren Magnetfeld [mm]\vec{B}[/mm] ist durch folgenden Hamiltonoperator gegeben
[mm]\hat{H} = \frac{2\mu_B}{\hbar}\vec{B} \cdot \hat{\vec{s}}[/mm]
wobei die Konstante [mm]\mu_B[/mm] das Bohrsche Magneton heißt. Nehmen Sie an, dass zum Zeitpunkt [mm]t_0[/mm] der Mittelwert [mm]\left< \vec{s} \right> = \vec{s_0} \in \IR ^3[/mm] ist. Finden Sie die Zeitabhängigkeit des Heisenbergoperators [mm]\hat{\vec{s}}\left( t \right)[/mm] und die von [mm]\left< \vec{s}\left( t \right) \right>[/mm]. Interpretieren Sie das Resultat.
Hinweis: Nehmen Sie an, das Magnetfeld [mm]\vec{B}[/mm] sei in z-Richtung orientiert, also [mm]\vec{B} = B \hat{e}_z [/mm] |
Hallo!
Ich habe diese Frage noch in keinem anderen Forum gestellt.
Im Prinzip habe ich ein Ergebnis bekommen, das gut interpretierbar ist, nämlich die Präzession des Spins um die Magnetfeldlinien, aber die nervige Schönheitsmacke hat, dass bei mir [mm]\left< \vec{s}\left( t \right) \right>[/mm] komplex ist, was ja bei einem Messwert nicht sein kann. Hier mein Weg grob skizziert:
Aufstellen der Heisenberggleichung:
[mm] \frac{d\hat{\vec{s}}\left( t \right)}{dt}= \frac{i}{\hbar} \left[\hat{H},\hat{\vec{s}}\left( t \right) \right] = \frac{2 \mu_B B i}{\hbar^2} \left[\hat{s}_z,\hat{\vec{s}}\left( t \right) \right] = \frac{2 \mu_B B i}{\hbar^2} \left[\hat{s}_z,\hat{s}_x \hat{e}_x + \hat{s}_y \hat{e}_y + \hat{s}_z \hat{e}_z \right] [/mm]
Ausnutzen der Kommutationsregeln für Drehimpulse ([mm]\left[ \hat{s}_x, \hat{s}_y \right] = i \hbar \hat{s}_z[/mm] +Permutationen):
[mm]\frac{d\hat{\vec{s}}\left( t \right)}{dt} = \frac{2 \mu_B B i}{\hbar^2} \cdot \left( i\hbar \hat{s}_y \hat{e}_x - i\hbar \hat{s}_x \hat{e}_y \right)[/mm]
Insgesamt also
[mm]\frac{d}{dt}\begin{pmatrix} \hat{s}_x \\ \hat{s}_y \\ \hat{s}_z \end{pmatrix} = \frac{2 \mu_B B}{\hbar}\begin{pmatrix} -\hat{s}_y \\ \hat{s}_x \\ 0 \end{pmatrix}[/mm]
Gelöst werden sollte diese Differentialgleichung durch einen Operator, der in etwa folgende Form hat:
[mm]\hat{\vec{s}}\left( t \right) = \begin{pmatrix} \hat{s}_x \left( 0 \right) e^{i\omega t} \\ -i\hat{s}_y \left( 0 \right) e^{i\omega t} \\ \hat{s}_z \left( 0 \right) \end{pmatrix}[/mm]
mit [mm]\omega = \frac{2 \mu_B B}{\hbar} [/mm]
Für den Mittelwert [mm]\frac{d}{dt}\left< \vec{s}\left( t \right) \right>[/mm] gilt dann aber:
[mm]\frac{d}{dt}\left< \vec{s}\left( t \right) \right> = \frac{d}{dt}\left< \Psi | \vec{s}\left( t \right) |\Psi \right> = \left< \Psi |\frac{d}{dt} \vec{s}\left( t \right) |\Psi \right>=\left< \Psi | i \omega \vec{s}\left( t \right) |\Psi \right> = i \omega \left< \vec{s}\left( t \right)\right>[/mm]
Dies heißt also
[mm]\left< \vec{s}\left( t \right)\right> = \vec{s}_0 e^{i\omega t}[/mm]
Wie ich schon oben erwähnt habe ist dieser Mittelwert jetzt auch komplex, was ich ein wenig unschön finde. Sieht jemand den Fehler den ich gemacht habe? Hab ich was an der Differentialgleichung im Heisenbergbild falsch gemacht? Oder vielleicht beim Berechnen des Mittelwertes?
Ich stehe etwas auf dem Schlauch jetzt.
Vielen Dank für die Hilfe!!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Di 07.07.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|